Spaces:
Runtime error
Runtime error
# coding: UTF-8 | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
class Config(object): | |
"""配置参数""" | |
def __init__(self, dataset, embedding): | |
self.model_name = 'DPCNN' | |
self.train_path = dataset + '/data/train.txt' # 训练集 | |
self.dev_path = dataset + '/data/dev.txt' # 验证集 | |
self.test_path = dataset + '/data/test.txt' # 测试集 | |
self.class_list = [x.strip() for x in open( | |
dataset + '/data/class.txt', encoding='utf-8').readlines()] # 类别名单 | |
self.vocab_path = dataset + '/data/vocab.pkl' # 词表 | |
self.save_path = dataset + '/saved_dict/' + self.model_name + '.ckpt' # 模型训练结果 | |
self.log_path = dataset + '/log/' + self.model_name | |
self.embedding_pretrained = torch.tensor( | |
np.load(dataset + '/data/' + embedding)["embeddings"].astype('float32'))\ | |
if embedding != 'random' else None # 预训练词向量 | |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 设备 | |
self.dropout = 0.5 # 随机失活 | |
self.require_improvement = 1000 # 若超过1000batch效果还没提升,则提前结束训练 | |
self.num_classes = len(self.class_list) # 类别数 | |
self.n_vocab = 0 # 词表大小,在运行时赋值 | |
self.num_epochs = 20 # epoch数 | |
self.batch_size = 128 # mini-batch大小 | |
self.pad_size = 32 # 每句话处理成的长度(短填长切) | |
self.learning_rate = 1e-3 # 学习率 | |
self.embed = self.embedding_pretrained.size(1)\ | |
if self.embedding_pretrained is not None else 300 # 字向量维度 | |
self.num_filters = 250 # 卷积核数量(channels数) | |
'''Deep Pyramid Convolutional Neural Networks for Text Categorization''' | |
class Model(nn.Module): | |
def __init__(self, config): | |
super(Model, self).__init__() | |
if config.embedding_pretrained is not None: | |
self.embedding = nn.Embedding.from_pretrained(config.embedding_pretrained, freeze=False) | |
else: | |
self.embedding = nn.Embedding(config.n_vocab, config.embed, padding_idx=config.n_vocab - 1) | |
self.conv_region = nn.Conv2d(1, config.num_filters, (3, config.embed), stride=1) | |
self.conv = nn.Conv2d(config.num_filters, config.num_filters, (3, 1), stride=1) | |
self.max_pool = nn.MaxPool2d(kernel_size=(3, 1), stride=2) | |
self.padding1 = nn.ZeroPad2d((0, 0, 1, 1)) # top bottom | |
self.padding2 = nn.ZeroPad2d((0, 0, 0, 1)) # bottom | |
self.relu = nn.ReLU() | |
self.fc = nn.Linear(config.num_filters, config.num_classes) | |
def forward(self, x): | |
x = x[0] | |
x = self.embedding(x) | |
x = x.unsqueeze(1) # [batch_size, 250, seq_len, 1] | |
x = self.conv_region(x) # [batch_size, 250, seq_len-3+1, 1] | |
x = self.padding1(x) # [batch_size, 250, seq_len, 1] | |
x = self.relu(x) | |
x = self.conv(x) # [batch_size, 250, seq_len-3+1, 1] | |
x = self.padding1(x) # [batch_size, 250, seq_len, 1] | |
x = self.relu(x) | |
x = self.conv(x) # [batch_size, 250, seq_len-3+1, 1] | |
while x.size()[2] > 2: | |
x = self._block(x) | |
x = x.squeeze() # [batch_size, num_filters(250)] | |
x = self.fc(x) | |
return x | |
def _block(self, x): | |
x = self.padding2(x) | |
px = self.max_pool(x) | |
x = self.padding1(px) | |
x = F.relu(x) | |
x = self.conv(x) | |
x = self.padding1(x) | |
x = F.relu(x) | |
x = self.conv(x) | |
# Short Cut | |
x = x + px | |
return x | |