Spaces:
Runtime error
Runtime error
add model weight
Browse files
app.py
CHANGED
@@ -1,11 +1,118 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
pipe = pipeline("translation", model="sun-tana/residual_text_t1_m1")
|
6 |
|
7 |
def predict(text):
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
iface = gr.Interface(
|
11 |
fn=predict,
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
from pythainlp import word_tokenize
|
4 |
+
import numpy as np
|
5 |
+
import tensorflow as tf
|
6 |
+
from tensorflow import keras
|
7 |
+
from tensorflow.keras.preprocessing.text import Tokenizer
|
8 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
9 |
+
from tensorflow.keras.models import Model
|
10 |
+
from tensorflow.keras.layers import Input, Embedding, Conv1D, MaxPooling1D, Dense, Flatten, Concatenate, Dropout, Dot, Activation, Reshape, Permute, Multiply
|
11 |
+
from keras import backend as K
|
12 |
+
import pandas as pd
|
13 |
+
from transformers import TFAutoModel, AutoTokenizer
|
14 |
+
from sklearn.model_selection import train_test_split
|
15 |
+
|
16 |
+
# load the tokenizer and transformer model
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base",max_length=60) #xlm-roberta-base bert-base-multilingual-cased
|
18 |
+
transformer_model = TFAutoModel.from_pretrained("xlm-roberta-base") #philschmid/tiny-bert-sst2-distilled
|
19 |
+
max_seq_length = 32
|
20 |
+
|
21 |
+
def create_model():
|
22 |
+
# input_layer = Input(shape=(input_ids.shape[1],))
|
23 |
+
# embedding_layer = Embedding(max_seq_length+ 1, 200, input_length=max_seq_length)(input_layer)
|
24 |
+
|
25 |
+
inputs = tf.keras.layers.Input(shape=(input_ids.shape[1],), dtype=tf.int32)
|
26 |
+
embedding_layer = transformer_model(inputs)[0]
|
27 |
+
|
28 |
+
flatten_layer = Flatten()(embedding_layer)
|
29 |
+
x1 = Dense(64, activation='relu')(flatten_layer)
|
30 |
+
x1 = Dense(32, activation='relu')(x1)
|
31 |
+
x1 = Dense(16, activation='relu')(x1)
|
32 |
+
|
33 |
+
|
34 |
+
x2 = Dense(64, activation='relu')(flatten_layer)
|
35 |
+
x2 = Dense(32, activation='relu')(x2)
|
36 |
+
x2 = Dense(16, activation='relu')(x2)
|
37 |
+
|
38 |
+
x3 = Dense(64, activation='relu')(flatten_layer)
|
39 |
+
x3 = Dense(32, activation='relu')(x3)
|
40 |
+
x3 = Dense(16, activation='relu')(x3)
|
41 |
+
|
42 |
+
x4 = Dense(64, activation='relu')(flatten_layer)
|
43 |
+
x4 = Dense(32, activation='relu')(x4)
|
44 |
+
x4 = Dense(16, activation='relu')(x4)
|
45 |
+
|
46 |
+
|
47 |
+
x5 = Dense(64, activation='relu')(flatten_layer)
|
48 |
+
x5 = Dense(32, activation='relu')(x5)
|
49 |
+
x5 = Dense(16, activation='relu')(x5)
|
50 |
+
|
51 |
+
x6 = Dense(512, activation='relu')(flatten_layer)
|
52 |
+
x6 = Dense(256, activation='relu')(x6)
|
53 |
+
x6 = Dense(128, activation='relu')(x6)
|
54 |
+
|
55 |
+
x7 = Dense(128, activation='relu')(flatten_layer)
|
56 |
+
x7 = Dense(64, activation='relu')(x7)
|
57 |
+
x7 = Dense(32, activation='relu')(x7)
|
58 |
+
|
59 |
+
x8 = Dense(256, activation='relu')(flatten_layer)
|
60 |
+
x8 = Dense(128, activation='relu')(x8)
|
61 |
+
x8 = Dense(64, activation='relu')(x8)
|
62 |
+
|
63 |
+
|
64 |
+
output_layer1 = Dense(1, activation='sigmoid', name='output1')(x1)
|
65 |
+
output_layer2 = Dense(1, activation='sigmoid', name='output2')(x2)
|
66 |
+
output_layer3 = Dense(1, activation='sigmoid', name='output3')(x3)
|
67 |
+
output_layer4 = Dense(1, activation='sigmoid', name='output4')(x4)
|
68 |
+
output_layer5 = Dense(1, activation='sigmoid', name='output5')(x5)
|
69 |
+
output_layer6 = Dense(num_class_label_6, activation='softmax', name='output6')(x6)
|
70 |
+
output_layer7 = Dense(num_class_label_7, activation='softmax', name='output7')(x7)
|
71 |
+
output_layer8 = Dense(num_class_label_8, activation='softmax', name='output8')(x8)
|
72 |
+
|
73 |
+
model = Model(inputs=inputs , outputs=[output_layer1, output_layer2, output_layer3,output_layer4,output_layer5,output_layer6,output_layer7,output_layer8])
|
74 |
+
model.load_weights("t1_m1.h5")
|
75 |
+
return model
|
76 |
+
|
77 |
+
|
78 |
+
model =create_model()
|
79 |
+
|
80 |
|
|
|
81 |
|
82 |
def predict(text):
|
83 |
+
test_texts = [text]
|
84 |
+
spilt_thai_text = [word_tokenize(x) for x in test_texts]
|
85 |
+
new_input_ids = tokenizer(spilt_thai_text, padding=True, truncation=True, return_tensors="tf",is_split_into_words=True)["input_ids"]
|
86 |
+
test_padded_sequences = pad_sequences(new_input_ids, maxlen=max_seq_length,padding='post',truncating='post',value=1) #post pre
|
87 |
+
print(test_padded_sequences.shape)
|
88 |
+
predicted_labels = model.predict(test_padded_sequences)
|
89 |
+
|
90 |
+
for i in range(len(test_texts)):
|
91 |
+
print(test_texts[i])
|
92 |
+
valid = 1 if predicted_labels[0][i] > 0.5 else 0
|
93 |
+
is_scene = 1 if predicted_labels[1][i] > 0.5 else 0
|
94 |
+
has_num = 1 if predicted_labels[2][i] > 0.5 else 0
|
95 |
+
print(f'is_valid : {valid}')
|
96 |
+
print(f'is_scene : {is_scene}')
|
97 |
+
print(f'has_num : {has_num}')
|
98 |
+
|
99 |
+
turn = 1 if predicted_labels[3][i] > 0.5 else 0
|
100 |
+
print(f'turn_on_off : {turn}')
|
101 |
+
print(f'device : ΰΉΰΈ')
|
102 |
+
|
103 |
+
env_id = np.argmax(predicted_labels[5][i])
|
104 |
+
env_label = env_decode[env_id]
|
105 |
+
|
106 |
+
hour_id = np.argmax(predicted_labels[6][i])
|
107 |
+
hour_label = hour_decode[hour_id]
|
108 |
+
|
109 |
+
minute_id = np.argmax(predicted_labels[7][i])
|
110 |
+
minute_label = minute_decode[minute_id]
|
111 |
+
print(f'env : {env_label}')
|
112 |
+
print(f'hour : {hour_label}')
|
113 |
+
print(f'minute : {minute_label}')
|
114 |
+
print('----')
|
115 |
+
return 'hello'
|
116 |
|
117 |
iface = gr.Interface(
|
118 |
fn=predict,
|