Spaces:
Sleeping
Sleeping
import pickle | |
import os | |
import re | |
from . import symbols | |
from .es_phonemizer import cleaner as es_cleaner | |
from .es_phonemizer import es_to_ipa | |
from transformers import AutoTokenizer | |
def distribute_phone(n_phone, n_word): | |
phones_per_word = [0] * n_word | |
for task in range(n_phone): | |
min_tasks = min(phones_per_word) | |
min_index = phones_per_word.index(min_tasks) | |
phones_per_word[min_index] += 1 | |
return phones_per_word | |
def text_normalize(text): | |
text = es_cleaner.spanish_cleaners(text) | |
return text | |
def post_replace_ph(ph): | |
rep_map = { | |
":": ",", | |
";": ",", | |
",": ",", | |
"。": ".", | |
"!": "!", | |
"?": "?", | |
"\n": ".", | |
"·": ",", | |
"、": ",", | |
"...": "…" | |
} | |
if ph in rep_map.keys(): | |
ph = rep_map[ph] | |
if ph in symbols: | |
return ph | |
if ph not in symbols: | |
ph = "UNK" | |
return ph | |
def refine_ph(phn): | |
tone = 0 | |
if re.search(r"\d$", phn): | |
tone = int(phn[-1]) + 1 | |
phn = phn[:-1] | |
return phn.lower(), tone | |
def refine_syllables(syllables): | |
tones = [] | |
phonemes = [] | |
for phn_list in syllables: | |
for i in range(len(phn_list)): | |
phn = phn_list[i] | |
phn, tone = refine_ph(phn) | |
phonemes.append(phn) | |
tones.append(tone) | |
return phonemes, tones | |
# model_id = 'bert-base-uncased' | |
model_id = 'dccuchile/bert-base-spanish-wwm-uncased' | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
def g2p(text, pad_start_end=True, tokenized=None): | |
if tokenized is None: | |
tokenized = tokenizer.tokenize(text) | |
# import pdb; pdb.set_trace() | |
phs = [] | |
ph_groups = [] | |
for t in tokenized: | |
if not t.startswith("#"): | |
ph_groups.append([t]) | |
else: | |
ph_groups[-1].append(t.replace("#", "")) | |
phones = [] | |
tones = [] | |
word2ph = [] | |
# print(ph_groups) | |
for group in ph_groups: | |
w = "".join(group) | |
phone_len = 0 | |
word_len = len(group) | |
if w == '[UNK]': | |
phone_list = ['UNK'] | |
else: | |
phone_list = list(filter(lambda p: p != " ", es_to_ipa.es2ipa(w))) | |
for ph in phone_list: | |
phones.append(ph) | |
tones.append(0) | |
phone_len += 1 | |
aaa = distribute_phone(phone_len, word_len) | |
word2ph += aaa | |
# print(phone_list, aaa) | |
# print('=' * 10) | |
if pad_start_end: | |
phones = ["_"] + phones + ["_"] | |
tones = [0] + tones + [0] | |
word2ph = [1] + word2ph + [1] | |
return phones, tones, word2ph | |
def get_bert_feature(text, word2ph, device=None): | |
from text import spanish_bert | |
return spanish_bert.get_bert_feature(text, word2ph, device=device) | |
if __name__ == "__main__": | |
text = "en nuestros tiempos estos dos pueblos ilustres empiezan a curarse, gracias sólo a la sana y vigorosa higiene de 1789." | |
# print(text) | |
text = text_normalize(text) | |
print(text) | |
phones, tones, word2ph = g2p(text) | |
bert = get_bert_feature(text, word2ph) | |
print(phones) | |
print(len(phones), tones, sum(word2ph), bert.shape) | |