MeloTTS / melo /preprocess_text.py
mrfakename's picture
Upload 72 files
7af4264 verified
raw
history blame
4.42 kB
import json
from collections import defaultdict
from random import shuffle
from typing import Optional
from tqdm import tqdm
import click
from text.cleaner import clean_text_bert
import os
import torch
from text.symbols import symbols, num_languages, num_tones
@click.command()
@click.option(
"--metadata",
default="data/example/metadata.list",
type=click.Path(exists=True, file_okay=True, dir_okay=False),
)
@click.option("--cleaned-path", default=None)
@click.option("--train-path", default=None)
@click.option("--val-path", default=None)
@click.option(
"--config_path",
default="configs/config.json",
type=click.Path(exists=True, file_okay=True, dir_okay=False),
)
@click.option("--val-per-spk", default=4)
@click.option("--max-val-total", default=8)
@click.option("--clean/--no-clean", default=True)
def main(
metadata: str,
cleaned_path: Optional[str],
train_path: str,
val_path: str,
config_path: str,
val_per_spk: int,
max_val_total: int,
clean: bool,
):
if train_path is None:
train_path = os.path.join(os.path.dirname(metadata), 'train.list')
if val_path is None:
val_path = os.path.join(os.path.dirname(metadata), 'val.list')
out_config_path = os.path.join(os.path.dirname(metadata), 'config.json')
if cleaned_path is None:
cleaned_path = metadata + ".cleaned"
if clean:
out_file = open(cleaned_path, "w", encoding="utf-8")
new_symbols = []
for line in tqdm(open(metadata, encoding="utf-8").readlines()):
try:
utt, spk, language, text = line.strip().split("|")
norm_text, phones, tones, word2ph, bert = clean_text_bert(text, language, device='cuda:0')
for ph in phones:
if ph not in symbols and ph not in new_symbols:
new_symbols.append(ph)
print('update!, now symbols:')
print(new_symbols)
with open(f'{language}_symbol.txt', 'w') as f:
f.write(f'{new_symbols}')
assert len(phones) == len(tones)
assert len(phones) == sum(word2ph)
out_file.write(
"{}|{}|{}|{}|{}|{}|{}\n".format(
utt,
spk,
language,
norm_text,
" ".join(phones),
" ".join([str(i) for i in tones]),
" ".join([str(i) for i in word2ph]),
)
)
bert_path = utt.replace(".wav", ".bert.pt")
os.makedirs(os.path.dirname(bert_path), exist_ok=True)
torch.save(bert.cpu(), bert_path)
except Exception as error:
print("err!", line, error)
out_file.close()
metadata = cleaned_path
spk_utt_map = defaultdict(list)
spk_id_map = {}
current_sid = 0
with open(metadata, encoding="utf-8") as f:
for line in f.readlines():
utt, spk, language, text, phones, tones, word2ph = line.strip().split("|")
spk_utt_map[spk].append(line)
if spk not in spk_id_map.keys():
spk_id_map[spk] = current_sid
current_sid += 1
train_list = []
val_list = []
for spk, utts in spk_utt_map.items():
shuffle(utts)
val_list += utts[:val_per_spk]
train_list += utts[val_per_spk:]
if len(val_list) > max_val_total:
train_list += val_list[max_val_total:]
val_list = val_list[:max_val_total]
with open(train_path, "w", encoding="utf-8") as f:
for line in train_list:
f.write(line)
with open(val_path, "w", encoding="utf-8") as f:
for line in val_list:
f.write(line)
config = json.load(open(config_path, encoding="utf-8"))
config["data"]["spk2id"] = spk_id_map
config["data"]["training_files"] = train_path
config["data"]["validation_files"] = val_path
config["data"]["n_speakers"] = len(spk_id_map)
config["num_languages"] = num_languages
config["num_tones"] = num_tones
config["symbols"] = symbols
with open(out_config_path, "w", encoding="utf-8") as f:
json.dump(config, f, indent=2, ensure_ascii=False)
if __name__ == "__main__":
main()