Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from PIL import Image | |
| from transformers import AutoProcessor, AutoModelForCausalLM, AutoConfig | |
| import subprocess | |
| subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
| # Function to load the model and processor | |
| def load_model_and_processor(): | |
| config = AutoConfig.from_pretrained("microsoft/Florence-2-base-ft", trust_remote_code=True) | |
| config.vision_config.model_type = "davit" | |
| model = AutoModelForCausalLM.from_pretrained("sujet-ai/Lutece-Vision-Base", config=config, trust_remote_code=True).eval() | |
| processor = AutoProcessor.from_pretrained("sujet-ai/Lutece-Vision-Base", config=config, trust_remote_code=True) | |
| return model, processor | |
| # Function to generate answer | |
| def generate_answer(model, processor, image, prompt): | |
| task = "<FinanceQA>" | |
| inputs = processor(text=prompt, images=image, return_tensors="pt") | |
| generated_ids = model.generate( | |
| input_ids=inputs["input_ids"], | |
| pixel_values=inputs["pixel_values"], | |
| max_new_tokens=1024, | |
| do_sample=False, | |
| num_beams=3, | |
| ) | |
| generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] | |
| parsed_answer = processor.post_process_generation(generated_text, task=task, image_size=(image.width, image.height)) | |
| return parsed_answer[task] | |
| # Streamlit app | |
| def main(): | |
| st.set_page_config(page_title="Lutece-Vision-Base Demo", page_icon="πΌ", layout="wide", initial_sidebar_state="expanded") | |
| # Title and description | |
| st.title("πΌ Lutece-Vision-Base Demo") | |
| st.markdown("Please keep in mind that inference might be slower since this Huggingface space is running on CPU only.") | |
| # Sidebar with SujetAI watermark | |
| st.sidebar.image("sujetAI.svg", use_column_width=True) | |
| st.sidebar.markdown("---") | |
| st.sidebar.markdown("Sujet AI is on a noble mission to democratize investment opportunities by leveraging built-in models and cutting-edge technologies. Committed to open-sourcing its technology, Sujet AI aims to contribute to the research and development communities, ultimately serving the greater good of humanity.") | |
| st.sidebar.markdown("---") | |
| st.sidebar.markdown("Our website : [sujet.ai](https://sujet.ai)") | |
| # Load model and processor | |
| model, processor = load_model_and_processor() | |
| # Two-column layout | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| st.subheader("π Financial Document") | |
| # Option to use example image or upload new one | |
| use_example = st.checkbox("Use example image", value=True) | |
| if use_example: | |
| image = Image.open("test_image.png").convert('RGB') | |
| st.image(image, caption="Example Document", use_column_width=True) | |
| else: | |
| uploaded_file = st.file_uploader("Upload a financial document", type=["png", "jpg", "jpeg"]) | |
| if uploaded_file is not None: | |
| image = Image.open(uploaded_file).convert('RGB') | |
| st.image(image, caption="Uploaded Document", use_column_width=True) | |
| else: | |
| image = None | |
| with col2: | |
| st.subheader("β Ask a Question") | |
| # Predefined questions | |
| example_questions = [ | |
| "What's the current expenses amount?", | |
| "When was this document produced?", | |
| "Who is this document addressed to?", | |
| "What is the amount that's circled?", | |
| "What's the project's identifier?" | |
| ] | |
| selected_question = st.selectbox("Select a question or type your own:", | |
| [""] + example_questions, | |
| index=0) | |
| if selected_question: | |
| question = selected_question | |
| else: | |
| question = st.text_input("Type your question here:") | |
| submit_button = st.button("π Generate Answer") | |
| # Answer section | |
| if submit_button and question and image is not None: | |
| with st.spinner("Generating answer..."): | |
| answer = generate_answer(model, processor, image, question) | |
| st.success(f"## π‘ {answer}") | |
| elif submit_button and image is None: | |
| st.warning("Please upload an image or use the example image before asking a question.") | |
| elif submit_button and not question: | |
| st.warning("Please enter a question or select one from the examples.") | |
| if __name__ == "__main__": | |
| main() |