suhas1324's picture
Update app.py
97dcc41 verified
import gradio as gr
import pickle
import string
from nltk.corpus import stopwords
import nltk
from nltk.stem.porter import PorterStemmer
import sklearn
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('corpus')
ps = PorterStemmer()
def transform_text(text):
text = text.lower()
text = nltk.word_tokenize(text)
y = []
for i in text:
if i.isalnum():
y.append(i)
text = y[:]
y.clear()
for i in text:
if i not in stopwords.words('english') and i not in string.punctuation:
y.append(i)
text = y[:]
y.clear()
for i in text:
y.append(ps.stem(i))
return " ".join(y)
tfidf = pickle.load(open('vectorizer.pkl','rb'))
model = pickle.load(open('model.pkl','rb'))
def predict_spam(input_sms):
# 1. Preprocess
transformed_sms = transform_text(input_sms)
# 2. Vectorize
vector_input = tfidf.transform([transformed_sms])
# 3. Predict
result = model.predict(vector_input)[0]
# 4. Display result
return "Spam" if result == 1 else "Not Spam"
title = "Email/SMS Spam Classifier"
inputs = gr.Text("Enter the message")
outputs = gr.Textbox(label='Results',lines = 20)
interface = gr.Interface(fn=predict_spam, inputs=inputs, outputs=outputs,title=title)
interface.launch(share=True)