Adding a simple monkey search for Leetcode - Darn LeetMonkey
Browse files- app.py +94 -0
- requirements.txt +11 -0
app.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from pinecone import Pinecone, ServerlessSpec
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
import torch
|
5 |
+
from pinecone_text.sparse import SpladeEncoder
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
import transformers
|
8 |
+
transformers.logging.set_verbosity_error()
|
9 |
+
|
10 |
+
# Initialize Pinecone
|
11 |
+
PINECONE_API_KEY = "your_pinecone_api_key"
|
12 |
+
pc = Pinecone(api_key=PINECONE_API_KEY)
|
13 |
+
|
14 |
+
index_name = "leetmonkey-sparse-dense"
|
15 |
+
index = pc.Index(index_name)
|
16 |
+
|
17 |
+
# Initialize models
|
18 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
19 |
+
splade = SpladeEncoder(device=device)
|
20 |
+
dense_model = SentenceTransformer('sentence-transformers/all-Mpnet-base-v2', device=device)
|
21 |
+
|
22 |
+
# Load the quantized Llama 2 model and tokenizer
|
23 |
+
model_name = "TheBloke/Llama-2-7B-Chat-GPTQ"
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
25 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
|
26 |
+
|
27 |
+
def search_problems(query, top_k=5):
|
28 |
+
dense_query = dense_model.encode([query])[0].tolist()
|
29 |
+
sparse_query = splade.encode_documents([query])[0]
|
30 |
+
|
31 |
+
results = index.query(
|
32 |
+
vector=dense_query,
|
33 |
+
sparse_vector={
|
34 |
+
'indices': sparse_query['indices'],
|
35 |
+
'values': sparse_query['values']
|
36 |
+
},
|
37 |
+
top_k=top_k,
|
38 |
+
include_metadata=True,
|
39 |
+
namespace='leetcode-problems'
|
40 |
+
)
|
41 |
+
|
42 |
+
return results['matches']
|
43 |
+
|
44 |
+
def generate_few_shot_prompt(search_results):
|
45 |
+
prompt = "Here are some example LeetCode problems:\n\n"
|
46 |
+
for result in search_results:
|
47 |
+
metadata = result['metadata']
|
48 |
+
prompt += f"Title: {metadata['title']}\n"
|
49 |
+
prompt += f"Topics: {', '.join(metadata['topicTags'])}\n"
|
50 |
+
prompt += f"Difficulty: {metadata['difficulty']}\n\n"
|
51 |
+
return prompt
|
52 |
+
|
53 |
+
def generate_response(user_query, top_k=5):
|
54 |
+
search_results = search_problems(user_query, top_k)
|
55 |
+
few_shot_prompt = generate_few_shot_prompt(search_results)
|
56 |
+
|
57 |
+
system_prompt = """You are an AI assistant specialized in providing information about LeetCode problems.
|
58 |
+
Your task is to recommend relevant problems based on the user's query and the provided examples.
|
59 |
+
Focus on problem titles, difficulty levels, topic tags, and companies that have asked these problems.
|
60 |
+
Do not provide specific problem solutions or content."""
|
61 |
+
|
62 |
+
user_prompt = f"Based on the following query, recommend relevant LeetCode problems:\n{user_query}"
|
63 |
+
full_prompt = f"{system_prompt}\n\n{few_shot_prompt}\n{user_prompt}\n\nRecommendations:"
|
64 |
+
|
65 |
+
input_ids = tokenizer.encode(full_prompt, return_tensors="pt").to(model.device)
|
66 |
+
attention_mask = torch.ones_like(input_ids)
|
67 |
+
|
68 |
+
with torch.no_grad():
|
69 |
+
output = model.generate(
|
70 |
+
input_ids,
|
71 |
+
attention_mask=attention_mask,
|
72 |
+
max_new_tokens=250,
|
73 |
+
do_sample=True,
|
74 |
+
top_p=0.9,
|
75 |
+
temperature=0.7,
|
76 |
+
num_return_sequences=1,
|
77 |
+
pad_token_id=tokenizer.eos_token_id
|
78 |
+
)
|
79 |
+
|
80 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
81 |
+
recommendations = response.split("Recommendations:")[1].strip()
|
82 |
+
return recommendations
|
83 |
+
|
84 |
+
# Create a Gradio interface
|
85 |
+
iface = gr.Interface(
|
86 |
+
fn=generate_response,
|
87 |
+
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your query about LeetCode problems..."),
|
88 |
+
outputs="text",
|
89 |
+
title="LeetCode Problem Assistant",
|
90 |
+
description="Ask about LeetCode problems and get structured responses based on titles, topics, and difficulty levels."
|
91 |
+
)
|
92 |
+
|
93 |
+
# Launch the app
|
94 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==3.50.2
|
2 |
+
pinecone-client==2.2.4
|
3 |
+
transformers==4.36.2
|
4 |
+
torch==2.1.2
|
5 |
+
sentence-transformers==2.2.2
|
6 |
+
pinecone-text==0.7.0
|
7 |
+
numpy==1.26.2
|
8 |
+
pandas==2.1.4
|
9 |
+
networkx==3.2.1
|
10 |
+
matplotlib==3.8.2
|
11 |
+
torch-geometric==2.4.0
|