sudo-paras-shah commited on
Commit
302d684
·
1 Parent(s): 62c06e0

tf keras issues again

Browse files
requirements.txt CHANGED
@@ -1,4 +1,5 @@
1
  streamlit
2
  numpy
3
  tensorflow
 
4
  Pillow
 
1
  streamlit
2
  numpy
3
  tensorflow
4
+ keras
5
  Pillow
src/nets/Loss.py CHANGED
@@ -1,5 +1,5 @@
1
  import tensorflow as tf
2
- from tensorflow.keras import backend as K
3
 
4
  def multi_category_focal_loss2(gamma=2., alpha=1):
5
  """
 
1
  import tensorflow as tf
2
+ from keras import backend as K
3
 
4
  def multi_category_focal_loss2(gamma=2., alpha=1):
5
  """
src/nets/mobilenet.py CHANGED
@@ -1,8 +1,8 @@
1
- from tensorflow.keras import backend as K
2
- from tensorflow.keras.layers import (Activation, BatchNormalization, Conv2D,
3
  DepthwiseConv2D, Dropout, GlobalAveragePooling2D,
4
  Input, Reshape)
5
- from tensorflow.keras.models import Model
6
 
7
 
8
  def _conv_block(inputs, filters, alpha, kernel=(3, 3), strides=(1, 1)):
 
1
+ from keras import backend as K
2
+ from keras.layers import (Activation, BatchNormalization, Conv2D,
3
  DepthwiseConv2D, Dropout, GlobalAveragePooling2D,
4
  Input, Reshape)
5
+ from keras.models import Model
6
 
7
 
8
  def _conv_block(inputs, filters, alpha, kernel=(3, 3), strides=(1, 1)):
src/nets/resnet50.py CHANGED
@@ -1,8 +1,8 @@
1
- from tensorflow.keras import layers
2
- from tensorflow.keras.layers import (Activation, AveragePooling2D, BatchNormalization,
3
  Conv2D, Dense, Flatten, Input, MaxPooling2D,
4
  ZeroPadding2D)
5
- from tensorflow.keras.models import Model
6
 
7
 
8
  def identity_block(input_tensor, kernel_size, filters, stage, block):
 
1
+ from keras import layers
2
+ from keras.layers import (Activation, AveragePooling2D, BatchNormalization,
3
  Conv2D, Dense, Flatten, Input, MaxPooling2D,
4
  ZeroPadding2D)
5
+ from keras.models import Model
6
 
7
 
8
  def identity_block(input_tensor, kernel_size, filters, stage, block):
src/nets/vgg16.py CHANGED
@@ -1,5 +1,5 @@
1
- from tensorflow.keras.layers import Conv2D, Dense, Flatten, Input, MaxPooling2D
2
- from tensorflow.keras.models import Model #导入包Conv2D是卷积核 Flatten是展开 Input输入 MaxPooling2D最大卷积核
3
 
4
  def VGG16(input_shape=None, classes=1000): #def 就是开始定义VGG16的网络
5
  img_input = Input(shape=input_shape) # 224, 224, 3
 
1
+ from keras.layers import Conv2D, Dense, Flatten, Input, MaxPooling2D
2
+ from keras.models import Model #导入包Conv2D是卷积核 Flatten是展开 Input输入 MaxPooling2D最大卷积核
3
 
4
  def VGG16(input_shape=None, classes=1000): #def 就是开始定义VGG16的网络
5
  img_input = Input(shape=input_shape) # 224, 224, 3
src/utils/callbacks.py CHANGED
@@ -5,9 +5,10 @@ matplotlib.use('Agg')
5
  from matplotlib import pyplot as plt
6
  import scipy.signal
7
  import tensorflow as tf
 
8
 
9
 
10
- class LossHistory(tf.keras.callbacks.Callback):
11
  def __init__(self, log_dir):
12
  import datetime
13
  curr_time = datetime.datetime.now()
@@ -59,7 +60,7 @@ class LossHistory(tf.keras.callbacks.Callback):
59
  plt.cla()
60
  plt.close("all")
61
 
62
- class ExponentDecayScheduler(tf.keras.callbacks.Callback):
63
  def __init__(self,
64
  decay_rate,
65
  verbose=0):
@@ -71,13 +72,13 @@ class ExponentDecayScheduler(tf.keras.callbacks.Callback):
71
  def on_epoch_end(self, batch, logs=None):
72
  lr = self.model.optimizer.learning_rate
73
  try:
74
- current_lr = tf.keras.backend.get_value(lr)
75
  except Exception:
76
  current_lr = lr
77
 
78
  new_lr = current_lr * self.decay_rate
79
  try:
80
- tf.keras.backend.set_value(lr, new_lr)
81
  except Exception:
82
  print("Warning: Could not set learning rate dynamically.")
83
 
 
5
  from matplotlib import pyplot as plt
6
  import scipy.signal
7
  import tensorflow as tf
8
+ import keras
9
 
10
 
11
+ class LossHistory(keras.callbacks.Callback):
12
  def __init__(self, log_dir):
13
  import datetime
14
  curr_time = datetime.datetime.now()
 
60
  plt.cla()
61
  plt.close("all")
62
 
63
+ class ExponentDecayScheduler(keras.callbacks.Callback):
64
  def __init__(self,
65
  decay_rate,
66
  verbose=0):
 
72
  def on_epoch_end(self, batch, logs=None):
73
  lr = self.model.optimizer.learning_rate
74
  try:
75
+ current_lr = keras.backend.get_value(lr)
76
  except Exception:
77
  current_lr = lr
78
 
79
  new_lr = current_lr * self.decay_rate
80
  try:
81
+ keras.backend.set_value(lr, new_lr)
82
  except Exception:
83
  print("Warning: Could not set learning rate dynamically.")
84
 
src/utils/dataloader.py CHANGED
@@ -4,13 +4,13 @@ from random import shuffle
4
  import cv2
5
  import tensorflow as tf
6
  import numpy as np
7
- from tensorflow.keras.utils import to_categorical
8
  from PIL import Image
9
 
10
  from .utils import cvtColor, preprocess_input
11
 
12
 
13
- class ClsDatasets(tf.keras.utils.Sequence):
14
  def __init__(self, annotation_lines, input_shape, batch_size, num_classes, train, **kwargs):
15
  super().__init__()
16
  self.annotation_lines = annotation_lines
 
4
  import cv2
5
  import tensorflow as tf
6
  import numpy as np
7
+ from keras.utils import to_categorical
8
  from PIL import Image
9
 
10
  from .utils import cvtColor, preprocess_input
11
 
12
 
13
+ class ClsDatasets(keras.utils.Sequence):
14
  def __init__(self, annotation_lines, input_shape, batch_size, num_classes, train, **kwargs):
15
  super().__init__()
16
  self.annotation_lines = annotation_lines