Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!git clone https://github.com/sudipmondal1310/Internship.git
|
2 |
+
!pip install llama-index==0.5.6
|
3 |
+
!pip install langchain==0.0.148
|
4 |
+
from llama_index import SimpleDirectoryReader, GPTListIndex, readers, GPTSimpleVectorIndex, LLMPredictor, PromptHelper, ServiceContext
|
5 |
+
from langchain import OpenAI
|
6 |
+
import sys
|
7 |
+
import os
|
8 |
+
from IPython.display import Markdown, display
|
9 |
+
|
10 |
+
def construct_index(directory_path):
|
11 |
+
# set maximum input size
|
12 |
+
max_input_size = 4096
|
13 |
+
# set number of output tokens
|
14 |
+
num_outputs = 2000
|
15 |
+
# set maximum chunk overlap
|
16 |
+
max_chunk_overlap = 20
|
17 |
+
# set chunk size limit
|
18 |
+
chunk_size_limit = 600
|
19 |
+
|
20 |
+
# define prompt helper
|
21 |
+
prompt_helper = PromptHelper(max_input_size, num_outputs, max_chunk_overlap, chunk_size_limit=chunk_size_limit)
|
22 |
+
|
23 |
+
# define LLM
|
24 |
+
llm_predictor = LLMPredictor(llm=OpenAI(temperature=0.5, model_name="text-davinci-003", max_tokens=num_outputs))
|
25 |
+
|
26 |
+
documents = SimpleDirectoryReader(directory_path).load_data()
|
27 |
+
|
28 |
+
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)
|
29 |
+
index = GPTSimpleVectorIndex.from_documents(documents, service_context=service_context)
|
30 |
+
|
31 |
+
index.save_to_disk('index.json')
|
32 |
+
|
33 |
+
return index
|
34 |
+
|
35 |
+
os.environ["OPENAI_API_KEY"]="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"
|
36 |
+
|
37 |
+
construct_index("/content/Internship/Data")
|
38 |
+
|
39 |
+
pip install gradio
|
40 |
+
|
41 |
+
|
42 |
+
def ask_ai_new(query):
|
43 |
+
index = GPTSimpleVectorIndex.load_from_disk('index.json')
|
44 |
+
while True:
|
45 |
+
#query = input("What do you want to ask? ")
|
46 |
+
response = index.query(query)
|
47 |
+
response = Markdown(f"<b>{response.response}</b>")
|
48 |
+
print(response)
|
49 |
+
return response.data
|
50 |
+
|
51 |
+
import time
|
52 |
+
import random
|
53 |
+
import gradio as gr
|
54 |
+
|
55 |
+
with gr.Blocks() as demo:
|
56 |
+
chatbot = gr.Chatbot()
|
57 |
+
query = gr.inputs.Textbox(label="Enter your message here")
|
58 |
+
clear = gr.Button("Clear")
|
59 |
+
|
60 |
+
def user(user_message, history):
|
61 |
+
return "", history + [[user_message, None]]
|
62 |
+
|
63 |
+
def bot(history):
|
64 |
+
bot_message = ask_ai_new(history[-1][0])
|
65 |
+
print(bot_message)
|
66 |
+
history[-1][1] = ""
|
67 |
+
for character in bot_message:
|
68 |
+
history[-1][1] += character
|
69 |
+
time.sleep(0.05)
|
70 |
+
yield history
|
71 |
+
|
72 |
+
query.submit(user, [query, chatbot], [query, chatbot], queue=False).then(
|
73 |
+
bot, chatbot, chatbot
|
74 |
+
)
|
75 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
76 |
+
|
77 |
+
demo.queue()
|
78 |
+
demo.launch()
|