Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import torchvision.transforms as transforms | |
from PIL import Image | |
import os | |
class CatDogClassifier: | |
def __init__(self, model_path="model.pt"): | |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# Load the traced model | |
self.model = torch.jit.load(model_path) | |
self.model = self.model.to(self.device) | |
self.model.eval() | |
# Define the same transforms used during training/testing | |
self.transform = transforms.Compose([ | |
transforms.Resize((160, 160)), | |
transforms.ToTensor(), | |
transforms.Normalize( | |
mean=[0.485, 0.456, 0.406], | |
std=[0.229, 0.224, 0.225] | |
) | |
]) | |
# Class labels | |
self.labels = ['Dog', 'Cat'] | |
def predict(self, image): | |
if image is None: | |
return None | |
# Convert to PIL Image if needed | |
if not isinstance(image, Image.Image): | |
image = Image.fromarray(image).convert('RGB') | |
# Preprocess image | |
img_tensor = self.transform(image).unsqueeze(0).to(self.device) | |
# Get prediction | |
output = self.model(img_tensor) | |
probabilities = torch.nn.functional.softmax(output[0], dim=0) | |
# Create prediction dictionary | |
return { | |
self.labels[idx]: float(prob) | |
for idx, prob in enumerate(probabilities) | |
} | |
# Create classifier instance | |
classifier = CatDogClassifier() | |
# Create Gradio interface | |
demo = gr.Interface( | |
fn=classifier.predict, | |
inputs=gr.Image(), | |
outputs=gr.Label(num_top_classes=2), | |
title="Cat vs Dog Classifier", | |
description="Upload an image to classify whether it's a cat or a dog", | |
examples=[ | |
["examples/cat.jpg"], | |
["examples/dog.jpg"] | |
] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |