Spaces:
Build error
Build error
| import gradio as gr | |
| import tensorflow as tf | |
| import numpy as np | |
| from PIL import Image | |
| import tensorflow.keras as keras | |
| import keras.applications.vgg16 as vgg16 | |
| from tensorflow.keras.applications.vgg16 import preprocess_input | |
| from tensorflow.keras.models import load_model | |
| # load model | |
| model = load_model('model520.h5') | |
| #prediction classes | |
| #classnames = ['paper', 'cardboard', 'plastic', 'metal', 'food', 'battery', 'shoes', 'clothes', 'glass', 'medical'] | |
| classnames = ['battery','cardboard','clothes','food','glass','medical','metal','paper','plastic','shoes'] | |
| #prediction function | |
| def predict_image(img): | |
| img_4d=img.reshape(-1,224, 224,3) | |
| prediction=model.predict(img_4d)[0] | |
| return {classnames[i]: float(prediction[i]) for i in range(len(classnames))} | |
| #Gradio interface | |
| image = gr.inputs.Image(shape=(224, 224)) | |
| label = gr.outputs.Label(num_top_classes=3) | |
| article="<p style='text-align: center; font-weight:bold;'>Model based on the VGG-16 CNN</p>" | |
| examples = ['battery.jpeg', 'clothes.jpeg', 'plastic.jpg'] | |
| gr.Interface(fn=predict_image, inputs=image, title="Garbage Classifier VGG-19", | |
| description="This is a Garbage Classification Model Trained using VGG-19 architecture. Deployed to Hugging Face using Gradio.", outputs=label, examples=examples, article=article, enable_queue=True, interpretation='default').launch(share="True") |