Guess-What-Moves / utils /vit_extractor.py
subhc's picture
Code Commit
5e88f62
raw
history blame
No virus
18.2 kB
import argparse
import math
import types
from pathlib import Path
from typing import Union, List, Tuple
import timm
import torch
import torch.nn.modules.utils as nn_utils
from PIL import Image
from torch import nn
from torchvision import transforms
class ViTExtractor:
""" This class facilitates extraction of features, descriptors, and saliency maps from a ViT.
We use the following notation in the documentation of the module's methods:
B - batch size
h - number of heads. usually takes place of the channel dimension in pytorch's convention BxCxHxW
p - patch size of the ViT. either 8 or 16.
t - number of tokens. equals the number of patches + 1, e.g. HW / p**2 + 1. Where H and W are the height and width
of the input image.
d - the embedding dimension in the ViT.
"""
def __init__(self, model_type: str = 'dino_vits8', stride: int = 4, model: nn.Module = None, device: str = 'cuda'):
"""
:param model_type: A string specifying the type of model to extract from.
[dino_vits8 | dino_vits16 | dino_vitb8 | dino_vitb16 | vit_small_patch8_224 |
vit_small_patch16_224 | vit_base_patch8_224 | vit_base_patch16_224]
:param stride: stride of first convolution layer. small stride -> higher resolution.
:param model: Optional parameter. The nn.Module to extract from instead of creating a new one in ViTExtractor.
should be compatible with model_type.
"""
self.model_type = model_type
self.device = device
if model is not None:
self.model = model
else:
self.model = ViTExtractor.create_model(model_type)
self.model = ViTExtractor.patch_vit_resolution(self.model, stride=stride)
self.model.eval()
self.model.to(self.device)
self.p = self.model.patch_embed.patch_size
self.stride = self.model.patch_embed.proj.stride
self.mean = (0.485, 0.456, 0.406) if "dino" in self.model_type else (0.5, 0.5, 0.5)
self.std = (0.229, 0.224, 0.225) if "dino" in self.model_type else (0.5, 0.5, 0.5)
self._feats = []
self.hook_handlers = []
self.load_size = None
self.num_patches = None
@staticmethod
def create_model(model_type: str) -> nn.Module:
"""
:param model_type: a string specifying which model to load. [dino_vits8 | dino_vits16 | dino_vitb8 |
dino_vitb16 | vit_small_patch8_224 | vit_small_patch16_224 | vit_base_patch8_224 |
vit_base_patch16_224]
:return: the model
"""
if 'dino' in model_type:
model = torch.hub.load('facebookresearch/dino:main', model_type)
else: # model from timm -- load weights from timm to dino model (enables working on arbitrary size images).
temp_model = timm.create_model(model_type, pretrained=True)
model_type_dict = {
'vit_small_patch16_224': 'dino_vits16',
'vit_small_patch8_224': 'dino_vits8',
'vit_base_patch16_224': 'dino_vitb16',
'vit_base_patch8_224': 'dino_vitb8'
}
model = torch.hub.load('facebookresearch/dino:main', model_type_dict[model_type])
temp_state_dict = temp_model.state_dict()
del temp_state_dict['head.weight']
del temp_state_dict['head.bias']
model.load_state_dict(temp_state_dict)
return model
@staticmethod
def _fix_pos_enc(patch_size: int, stride_hw: Tuple[int, int]):
"""
Creates a method for position encoding interpolation.
:param patch_size: patch size of the model.
:param stride_hw: A tuple containing the new height and width stride respectively.
:return: the interpolation method
"""
def interpolate_pos_encoding(self, x: torch.Tensor, w: int, h: int) -> torch.Tensor:
npatch = x.shape[1] - 1
N = self.pos_embed.shape[1] - 1
if npatch == N and w == h:
return self.pos_embed
class_pos_embed = self.pos_embed[:, 0]
patch_pos_embed = self.pos_embed[:, 1:]
dim = x.shape[-1]
# compute number of tokens taking stride into account
w0 = 1 + (w - patch_size) // stride_hw[1]
h0 = 1 + (h - patch_size) // stride_hw[0]
assert (w0 * h0 == npatch), f"""got wrong grid size for {h}x{w} with patch_size {patch_size} and
stride {stride_hw} got {h0}x{w0}={h0 * w0} expecting {npatch}"""
# we add a small number to avoid floating point error in the interpolation
# see discussion at https://github.com/facebookresearch/dino/issues/8
w0, h0 = w0 + 0.1, h0 + 0.1
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2),
scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)),
mode='bicubic',
align_corners=False, recompute_scale_factor=False
)
assert int(w0) == patch_pos_embed.shape[-2] and int(h0) == patch_pos_embed.shape[-1]
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
return interpolate_pos_encoding
@staticmethod
def patch_vit_resolution(model: nn.Module, stride: int) -> nn.Module:
"""
change resolution of model output by changing the stride of the patch extraction.
:param model: the model to change resolution for.
:param stride: the new stride parameter.
:return: the adjusted model
"""
patch_size = model.patch_embed.patch_size
if stride == patch_size: # nothing to do
return model
stride = nn_utils._pair(stride)
assert all([(patch_size // s_) * s_ == patch_size for s_ in
stride]), f'stride {stride} should divide patch_size {patch_size}'
# fix the stride
model.patch_embed.proj.stride = stride
# fix the positional encoding code
model.interpolate_pos_encoding = types.MethodType(ViTExtractor._fix_pos_enc(patch_size, stride), model)
return model
def preprocess(self, image_path: Union[str, Path],
load_size: Union[int, Tuple[int, int]] = None) -> Tuple[torch.Tensor, Image.Image]:
"""
Preprocesses an image before extraction.
:param image_path: path to image to be extracted.
:param load_size: optional. Size to resize image before the rest of preprocessing.
:return: a tuple containing:
(1) the preprocessed image as a tensor to insert the model of shape BxCxHxW.
(2) the pil image in relevant dimensions
"""
pil_image = Image.open(image_path).convert('RGB')
if load_size is not None:
pil_image = transforms.Resize(load_size, interpolation=transforms.InterpolationMode.LANCZOS)(pil_image)
prep = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=self.mean, std=self.std)
])
prep_img = prep(pil_image)[None, ...]
return prep_img, pil_image
def _get_hook(self, facet: str):
"""
generate a hook method for a specific block and facet.
"""
if facet in ['attn', 'token']:
def _hook(model, input, output):
self._feats.append(output)
return _hook
if facet == 'query':
facet_idx = 0
elif facet == 'key':
facet_idx = 1
elif facet == 'value':
facet_idx = 2
else:
raise TypeError(f"{facet} is not a supported facet.")
def _inner_hook(module, input, output):
input = input[0]
B, N, C = input.shape
qkv = module.qkv(input).reshape(B, N, 3, module.num_heads, C // module.num_heads).permute(2, 0, 3, 1, 4)
self._feats.append(qkv[facet_idx]) # Bxhxtxd
return _inner_hook
def _register_hooks(self, layers: List[int], facet: str) -> None:
"""
register hook to extract features.
:param layers: layers from which to extract features.
:param facet: facet to extract. One of the following options: ['key' | 'query' | 'value' | 'token' | 'attn']
"""
for block_idx, block in enumerate(self.model.blocks):
if block_idx in layers:
if facet == 'token':
self.hook_handlers.append(block.register_forward_hook(self._get_hook(facet)))
elif facet == 'attn':
self.hook_handlers.append(block.attn.attn_drop.register_forward_hook(self._get_hook(facet)))
elif facet in ['key', 'query', 'value']:
self.hook_handlers.append(block.attn.register_forward_hook(self._get_hook(facet)))
else:
raise TypeError(f"{facet} is not a supported facet.")
def _unregister_hooks(self) -> None:
"""
unregisters the hooks. should be called after feature extraction.
"""
for handle in self.hook_handlers:
handle.remove()
self.hook_handlers = []
def _extract_features(self, batch: torch.Tensor, layers: List[int] = 11, facet: str = 'key') -> List[torch.Tensor]:
"""
extract features from the model
:param batch: batch to extract features for. Has shape BxCxHxW.
:param layers: layer to extract. A number between 0 to 11.
:param facet: facet to extract. One of the following options: ['key' | 'query' | 'value' | 'token' | 'attn']
:return : tensor of features.
if facet is 'key' | 'query' | 'value' has shape Bxhxtxd
if facet is 'attn' has shape Bxhxtxt
if facet is 'token' has shape Bxtxd
"""
B, C, H, W = batch.shape
self._feats = []
self._register_hooks(layers, facet)
_ = self.model(batch)
self._unregister_hooks()
self.load_size = (H, W)
self.num_patches = (1 + (H - self.p) // self.stride[0], 1 + (W - self.p) // self.stride[1])
return self._feats
def _log_bin(self, x: torch.Tensor, hierarchy: int = 2) -> torch.Tensor:
"""
create a log-binned descriptor.
:param x: tensor of features. Has shape Bxhxtxd.
:param hierarchy: how many bin hierarchies to use.
"""
B = x.shape[0]
num_bins = 1 + 8 * hierarchy
bin_x = x.permute(0, 2, 3, 1).flatten(start_dim=-2, end_dim=-1) # Bx(t-1)x(dxh)
bin_x = bin_x.permute(0, 2, 1)
bin_x = bin_x.reshape(B, bin_x.shape[1], self.num_patches[0], self.num_patches[1])
# Bx(dxh)xnum_patches[0]xnum_patches[1]
sub_desc_dim = bin_x.shape[1]
avg_pools = []
# compute bins of all sizes for all spatial locations.
for k in range(0, hierarchy):
# avg pooling with kernel 3**kx3**k
win_size = 3 ** k
avg_pool = torch.nn.AvgPool2d(win_size, stride=1, padding=win_size // 2, count_include_pad=False)
avg_pools.append(avg_pool(bin_x))
bin_x = torch.zeros((B, sub_desc_dim * num_bins, self.num_patches[0], self.num_patches[1])).to(self.device)
for y in range(self.num_patches[0]):
for x in range(self.num_patches[1]):
part_idx = 0
# fill all bins for a spatial location (y, x)
for k in range(0, hierarchy):
kernel_size = 3 ** k
for i in range(y - kernel_size, y + kernel_size + 1, kernel_size):
for j in range(x - kernel_size, x + kernel_size + 1, kernel_size):
if i == y and j == x and k != 0:
continue
if 0 <= i < self.num_patches[0] and 0 <= j < self.num_patches[1]:
bin_x[:, part_idx * sub_desc_dim: (part_idx + 1) * sub_desc_dim, y, x] = avg_pools[k][
:, :, i, j]
else: # handle padding in a more delicate way than zero padding
temp_i = max(0, min(i, self.num_patches[0] - 1))
temp_j = max(0, min(j, self.num_patches[1] - 1))
bin_x[:, part_idx * sub_desc_dim: (part_idx + 1) * sub_desc_dim, y, x] = avg_pools[k][
:, :, temp_i,
temp_j]
part_idx += 1
bin_x = bin_x.flatten(start_dim=-2, end_dim=-1).permute(0, 2, 1).unsqueeze(dim=1)
# Bx1x(t-1)x(dxh)
return bin_x
def extract_descriptors(self, batch: torch.Tensor, layer: int = 11, facet: str = 'key',
bin: bool = False, include_cls: bool = False) -> torch.Tensor:
"""
extract descriptors from the model
:param batch: batch to extract descriptors for. Has shape BxCxHxW.
:param layers: layer to extract. A number between 0 to 11.
:param facet: facet to extract. One of the following options: ['key' | 'query' | 'value' | 'token']
:param bin: apply log binning to the descriptor. default is False.
:return: tensor of descriptors. Bx1xtxd' where d' is the dimension of the descriptors.
"""
assert facet in ['key', 'query', 'value', 'token'], f"""{facet} is not a supported facet for descriptors.
choose from ['key' | 'query' | 'value' | 'token'] """
self._extract_features(batch, [layer], facet)
x = self._feats[0]
if facet == 'token':
x.unsqueeze_(dim=1) # Bx1xtxd
if not include_cls:
x = x[:, :, 1:, :] # remove cls token
else:
assert not bin, "bin = True and include_cls = True are not supported together, set one of them False."
if not bin:
desc = x.permute(0, 2, 3, 1).flatten(start_dim=-2, end_dim=-1).unsqueeze(dim=1) # Bx1xtx(dxh)
else:
desc = self._log_bin(x)
return desc
def extract_saliency_maps(self, batch: torch.Tensor) -> torch.Tensor:
"""
extract saliency maps. The saliency maps are extracted by averaging several attention heads from the last layer
in of the CLS token. All values are then normalized to range between 0 and 1.
:param batch: batch to extract saliency maps for. Has shape BxCxHxW.
:return: a tensor of saliency maps. has shape Bxt-1
"""
assert self.model_type == "dino_vits8", f"saliency maps are supported only for dino_vits model_type."
self._extract_features(batch, [11], 'attn')
head_idxs = [0, 2, 4, 5]
curr_feats = self._feats[0] # Bxhxtxt
cls_attn_map = curr_feats[:, head_idxs, 0, 1:].mean(dim=1) # Bx(t-1)
temp_mins, temp_maxs = cls_attn_map.min(dim=1)[0], cls_attn_map.max(dim=1)[0]
cls_attn_maps = (cls_attn_map - temp_mins) / (temp_maxs - temp_mins) # normalize to range [0,1]
return cls_attn_maps
""" taken from https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse"""
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Facilitate ViT Descriptor extraction.')
parser.add_argument('--image_path', type=str, required=True, help='path of the extracted image.')
parser.add_argument('--output_path', type=str, required=True, help='path to file containing extracted descriptors.')
parser.add_argument('--load_size', default=224, type=int, help='load size of the input image.')
parser.add_argument('--stride', default=4, type=int, help="""stride of first convolution layer.
small stride -> higher resolution.""")
parser.add_argument('--model_type', default='dino_vits8', type=str,
help="""type of model to extract.
Choose from [dino_vits8 | dino_vits16 | dino_vitb8 | dino_vitb16 | vit_small_patch8_224 |
vit_small_patch16_224 | vit_base_patch8_224 | vit_base_patch16_224]""")
parser.add_argument('--facet', default='key', type=str, help="""facet to create descriptors from.
options: ['key' | 'query' | 'value' | 'token']""")
parser.add_argument('--layer', default=11, type=int, help="layer to create descriptors from.")
parser.add_argument('--bin', default='False', type=str2bool, help="create a binned descriptor if True.")
args = parser.parse_args()
with torch.no_grad():
device = 'cuda' if torch.cuda.is_available() else 'cpu'
extractor = ViTExtractor(args.model_type, args.stride, device=device)
image_batch, image_pil = extractor.preprocess(args.image_path, args.load_size)
print(f"Image {args.image_path} is preprocessed to tensor of size {image_batch.shape}.")
descriptors = extractor.extract_descriptors(image_batch.to(device), args.layer, args.facet, args.bin)
print(f"Descriptors are of size: {descriptors.shape}")
torch.save(descriptors, args.output_path)
print(f"Descriptors saved to: {args.output_path}")