Guess-What-Moves / datasets /flow_pair_detectron.py
subhc's picture
Code Commit
5e88f62
raw
history blame
12.1 kB
import math
from pathlib import Path
import random
import detectron2.data.transforms as DT
import einops
import numpy as np
import torch
import torch.nn.functional as F
import torchvision.transforms as T
from PIL import Image
from detectron2.data import detection_utils as d2_utils
from detectron2.structures import Instances, BitMasks
from torch.utils.data import Dataset
from utils.data import read_flow, read_flo
def load_flow_tensor(path, resize=None, normalize=True, align_corners=True):
"""
Load flow, scale the pixel values according to the resized scale.
If normalize is true, return rescaled in normalized pixel coordinates
where pixel coordinates are in range [-1, 1].
NOTE: RAFT USES ALIGN_CORNERS=TRUE SO WE NEED TO ACCOUNT FOR THIS
Returns (2, H, W) float32
"""
flow = read_flo(path).astype(np.float32)
H, W, _ = flow.shape
h, w = (H, W) if resize is None else resize
u, v = flow[..., 0], flow[..., 1]
if normalize:
if align_corners:
u = 2.0 * u / (W - 1)
v = 2.0 * v / (H - 1)
else:
u = 2.0 * u / W
v = 2.0 * v / H
else:
h, w = resize
u = w * u / W
v = h * v / H
if h != H or w !=W:
u = Image.fromarray(u).resize((w, h), Image.ANTIALIAS)
v = Image.fromarray(v).resize((w, h), Image.ANTIALIAS)
u, v = np.array(u), np.array(v)
return torch.from_numpy(np.stack([u, v], axis=0))
class FlowPairDetectron(Dataset):
def __init__(self, data_dir, resolution, to_rgb=False, size_divisibility=None, enable_photo_aug=False, flow_clip=1., norm=True, read_big=True, force1080p=False, flow_res=None):
self.eval = eval
self.to_rgb = to_rgb
self.data_dir = data_dir
self.flow_dir = {k: [e for e in v if e.shape[0] > 0] for k, v in data_dir[0].items()}
self.flow_dir = {k: v for k, v in self.flow_dir.items() if len(v) > 0}
self.resolution = resolution
self.size_divisibility = size_divisibility
self.ignore_label = -1
self.transforms = DT.AugmentationList([
DT.Resize(self.resolution, interp=Image.BICUBIC),
])
self.photometric_aug = T.Compose([
T.RandomApply(torch.nn.ModuleList([T.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1)]),
p=0.8),
T.RandomGrayscale(p=0.2),
]) if enable_photo_aug else None
self.flow_clip=flow_clip
self.norm_flow=norm
self.read_big = read_big
self.force1080p_transforms = None
if force1080p:
self.force1080p_transforms = DT.AugmentationList([
DT.Resize((1088, 1920), interp=Image.BICUBIC),
])
self.big_flow_resolution = flow_res
def __len__(self):
return sum([cat.shape[0] for cat in next(iter(self.flow_dir.values()))]) if len(
self.flow_dir.values()) > 0 else 0
def __getitem__(self, idx):
dataset_dicts = []
random_gap = random.choice(list(self.flow_dir.keys()))
flowgaps = self.flow_dir[random_gap]
vid = random.choice(flowgaps)
flos = random.choice(vid)
dataset_dict = {}
fname = Path(flos[0]).stem
dname = Path(flos[0]).parent.name
suffix = '.png' if 'CLEVR' in fname else '.jpg'
rgb_dir = (self.data_dir[1] / dname / fname).with_suffix(suffix)
gt_dir = (self.data_dir[2] / dname / fname).with_suffix('.png')
flo0 = einops.rearrange(read_flow(str(flos[0]), self.resolution, self.to_rgb), 'c h w -> h w c')
flo1 = einops.rearrange(read_flow(str(flos[1]), self.resolution, self.to_rgb), 'c h w -> h w c')
if self.big_flow_resolution is not None:
flo0_big = einops.rearrange(read_flow(str(flos[0]), self.big_flow_resolution, self.to_rgb), 'c h w -> h w c')
flo1_big = einops.rearrange(read_flow(str(flos[1]), self.big_flow_resolution, self.to_rgb), 'c h w -> h w c')
rgb = d2_utils.read_image(rgb_dir).astype(np.float32)
original_rgb = torch.as_tensor(np.ascontiguousarray(np.transpose(rgb, (2, 0, 1)).clip(0., 255.))).float()
if self.read_big:
rgb_big = d2_utils.read_image(str(rgb_dir).replace('480p', '1080p')).astype(np.float32)
rgb_big = (torch.as_tensor(np.ascontiguousarray(rgb_big))[:, :, :3]).permute(2, 0, 1).clamp(0., 255.)
if self.force1080p_transforms is not None:
rgb_big = F.interpolate(rgb_big[None], size=(1080, 1920), mode='bicubic').clamp(0., 255.)[0]
# print('not here', rgb.min(), rgb.max())
input = DT.AugInput(rgb)
# Apply the augmentation:
preprocessing_transforms = self.transforms(input) # type: DT.Transform
rgb = input.image
if self.photometric_aug:
rgb_aug = Image.fromarray(rgb.astype(np.uint8))
rgb_aug = self.photometric_aug(rgb_aug)
rgb_aug = d2_utils.convert_PIL_to_numpy(rgb_aug, 'RGB')
rgb_aug = np.transpose(rgb_aug, (2, 0, 1)).astype(np.float32)
rgb = np.transpose(rgb, (2, 0, 1))
rgb = rgb.clip(0., 255.)
# print('here', rgb.min(), rgb.max())
d2_utils.check_image_size(dataset_dict, flo0)
if gt_dir.exists():
sem_seg_gt = d2_utils.read_image(str(gt_dir))
sem_seg_gt = preprocessing_transforms.apply_segmentation(sem_seg_gt)
# sem_seg_gt = cv2.resize(sem_seg_gt, (self.resolution[1], self.resolution[0]), interpolation=cv2.INTER_NEAREST)
if sem_seg_gt.ndim == 3:
sem_seg_gt = sem_seg_gt[:, :, 0]
if sem_seg_gt.max() == 255:
sem_seg_gt = (sem_seg_gt > 128).astype(int)
else:
sem_seg_gt = np.zeros((self.resolution[0], self.resolution[1]))
gwm_dir = (Path(str(self.data_dir[2]).replace('Annotations', 'gwm')) / dname / fname).with_suffix('.png')
if gwm_dir.exists():
gwm_seg_gt = d2_utils.read_image(str(gwm_dir))
gwm_seg_gt = preprocessing_transforms.apply_segmentation(gwm_seg_gt)
gwm_seg_gt = np.array(gwm_seg_gt)
# gwm_seg_gt = cv2.resize(gwm_seg_gt, (self.resolution[1], self.resolution[0]), interpolation=cv2.INTER_NEAREST)
if gwm_seg_gt.ndim == 3:
gwm_seg_gt = gwm_seg_gt[:, :, 0]
if gwm_seg_gt.max() == 255:
gwm_seg_gt[gwm_seg_gt == 255] = 1
else:
gwm_seg_gt = None
if sem_seg_gt is None:
raise ValueError(
"Cannot find 'sem_seg_file_name' for semantic segmentation dataset {}.".format(
dataset_dict["file_name"]
)
)
# Pad image and segmentation label here!
if self.to_rgb:
flo0 = torch.as_tensor(np.ascontiguousarray(flo0.transpose(2, 0, 1))) / 2 + .5
flo0 = flo0 * 255
flo1 = torch.as_tensor(np.ascontiguousarray(flo1.transpose(2, 0, 1))) / 2 + .5
flo1 = flo1 * 255
if self.big_flow_resolution is not None:
flo0_big = torch.as_tensor(np.ascontiguousarray(flo0_big.transpose(2, 0, 1))) / 2 + .5
flo0_big = flo0_big * 255
flo1_big = torch.as_tensor(np.ascontiguousarray(flo1_big.transpose(2, 0, 1))) / 2 + .5
flo1_big = flo1_big * 255
else:
flo0 = torch.as_tensor(np.ascontiguousarray(flo0.transpose(2, 0, 1)))
flo1 = torch.as_tensor(np.ascontiguousarray(flo1.transpose(2, 0, 1)))
if self.norm_flow:
flo0 = flo0 / (flo0 ** 2).sum(0).max().sqrt()
flo1 = flo1 / (flo1 ** 2).sum(0).max().sqrt()
flo0 = flo0.clip(-self.flow_clip, self.flow_clip)
flo1 = flo1.clip(-self.flow_clip, self.flow_clip)
if self.big_flow_resolution is not None:
flo0_big = torch.as_tensor(np.ascontiguousarray(flo0_big.transpose(2, 0, 1)))
flo1_big = torch.as_tensor(np.ascontiguousarray(flo1_big.transpose(2, 0, 1)))
if self.norm_flow:
flo0_big = flo0_big / (flo0_big ** 2).sum(0).max().sqrt()
flo1_big = flo1_big / (flo1_big ** 2).sum(0).max().sqrt()
flo0_big = flo0_big.clip(-self.flow_clip, self.flow_clip)
flo1_big = flo1_big.clip(-self.flow_clip, self.flow_clip)
rgb = torch.as_tensor(np.ascontiguousarray(rgb))
if self.photometric_aug:
rgb_aug = torch.as_tensor(np.ascontiguousarray(rgb_aug))
if sem_seg_gt is not None:
sem_seg_gt = torch.as_tensor(sem_seg_gt.astype("long"))
if gwm_seg_gt is not None:
gwm_seg_gt = torch.as_tensor(gwm_seg_gt.astype("long"))
if self.size_divisibility > 0:
image_size = (flo0.shape[-2], flo0.shape[-1])
padding_size = [
0,
int(self.size_divisibility * math.ceil(image_size[1] // self.size_divisibility)) - image_size[1],
0,
int(self.size_divisibility * math.ceil(image_size[0] // self.size_divisibility)) - image_size[0],
]
flo0 = F.pad(flo0, padding_size, value=0).contiguous()
flo1 = F.pad(flo1, padding_size, value=0).contiguous()
rgb = F.pad(rgb, padding_size, value=128).contiguous()
if self.photometric_aug:
rgb_aug = F.pad(rgb_aug, padding_size, value=128).contiguous()
if sem_seg_gt is not None:
sem_seg_gt = F.pad(sem_seg_gt, padding_size, value=self.ignore_label).contiguous()
if gwm_seg_gt is not None:
gwm_seg_gt = F.pad(gwm_seg_gt, padding_size, value=self.ignore_label).contiguous()
image_shape = (rgb.shape[-2], rgb.shape[-1]) # h, w
# Pytorch's dataloader is efficient on torch.Tensor due to shared-memory,
# but not efficient on large generic data structures due to the use of pickle & mp.Queue.
# Therefore it's important to use torch.Tensor.
dataset_dict["flow"] = flo0
dataset_dict["flow_2"] = flo1
# dataset_dict["flow_fwd"] = flo_norm_fwd
# dataset_dict["flow_bwd"] = flo_norm_bwd
# dataset_dict["flow_rgb"] = rgb_flo0
# dataset_dict["flow_gap"] = gap
dataset_dict["rgb"] = rgb
dataset_dict["original_rgb"] = original_rgb
if self.read_big:
dataset_dict["RGB_BIG"] = rgb_big
if self.photometric_aug:
dataset_dict["rgb_aug"] = rgb_aug
if self.big_flow_resolution is not None:
dataset_dict["flow_big"] = flo0_big
dataset_dict["flow_big_2"] = flo1_big
if sem_seg_gt is not None:
dataset_dict["sem_seg"] = sem_seg_gt.long()
if gwm_seg_gt is not None:
dataset_dict["gwm_seg"] = gwm_seg_gt.long()
if "annotations" in dataset_dict:
raise ValueError("Semantic segmentation dataset should not have 'annotations'.")
# Prepare per-category binary masks
if sem_seg_gt is not None:
sem_seg_gt = sem_seg_gt.numpy()
instances = Instances(image_shape)
classes = np.unique(sem_seg_gt)
# remove ignored region
classes = classes[classes != self.ignore_label]
instances.gt_classes = torch.tensor(classes, dtype=torch.int64)
masks = []
for class_id in classes:
masks.append(sem_seg_gt == class_id)
if len(masks) == 0:
# Some image does not have annotation (all ignored)
instances.gt_masks = torch.zeros((0, sem_seg_gt.shape[-2], sem_seg_gt.shape[-1]))
else:
masks = BitMasks(
torch.stack([torch.from_numpy(np.ascontiguousarray(x.copy())) for x in masks])
)
instances.gt_masks = masks.tensor
dataset_dict["instances"] = instances
dataset_dicts.append(dataset_dict)
return dataset_dicts