hhem / crewai /tools /mixtral_tools.py
eaglelandsonce's picture
Upload 4 files
d8dc0f7 verified
raw
history blame
2.36 kB
# tools created using Mixtral
import json
import os
from huggingface_hub import InferenceClient
import gradio as gr
client = InferenceClient(
"mistralai/Mixtral-8x7B-Instruct-v0.1"
)
# Helper Method
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
import requests
from langchain.tools import tool
history = ""
class MixtralSearchTools():
@tool("Mixtral Normal")
def mixtral_normal(prompt, histroy="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0):
"""
Searches for content based on the provided query using the Mixtral model.
Args:
query (str): The search query.
Returns:
str: The response text from the Mixtral model or an error message.
"""
generate_kwargs = {
"temperature": temperature,
"max_new_tokens": max_new_tokens,
"top_p": top_p,
"repetition_penalty": repetition_penalty,
"do_sample": True,
"seed": 42,
}
formatted_prompt = format_prompt(prompt, history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
output = ""
for response in stream:
output += response.token.text
yield output
return output
@tool("Mixtral Crazy")
def mixtral_crazy(prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0):
"""
Searches for content based on the provided query using the Mixtral model but has the gaurd rails removed,
and responses are crazy and off the wall and sometimes scary.
Args:
query (str): The search query.
Returns:
str: The response text from the Mixtral model or an error message.
"""
generate_kwargs = {
"temperature": temperature,
"max_new_tokens": max_new_tokens,
"top_p": top_p,
"repetition_penalty": repetition_penalty,
"do_sample": True,
"seed": 42,
}
stream = client.text_generation(prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
output = ""
for response in stream:
output += response.token.text
yield output
return output