saiga-api-lora / app.py
muryshev's picture
Create app.py
c04a60f
raw
history blame
3.29 kB
from flask import Flask, request, jsonify
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
import torch
app = Flask(__name__)
MODEL_NAME = "IlyaGusev/saiga2_70b_lora"
DEFAULT_MESSAGE_TEMPLATE = "<s>{role}\n{content}</s>\n"
DEFAULT_SYSTEM_PROMPT = "Ты — Сайга, русскоязычный автоматический ассистент. Ты разговариваешь с людьми и помогаешь им."
class Conversation:
def __init__(
self,
message_template=DEFAULT_MESSAGE_TEMPLATE,
system_prompt=DEFAULT_SYSTEM_PROMPT,
start_token_id=1,
bot_token_id=9225
):
self.message_template = message_template
self.start_token_id = start_token_id
self.bot_token_id = bot_token_id
self.messages = [{
"role": "system",
"content": system_prompt
}]
def get_start_token_id(self):
return self.start_token_id
def get_bot_token_id(self):
return self.bot_token_id
def add_user_message(self, message):
self.messages.append({
"role": "user",
"content": message
})
def add_bot_message(self, message):
self.messages.append({
"role": "bot",
"content": message
})
def get_prompt(self, tokenizer):
final_text = ""
for message in self.messages:
message_text = self.message_template.format(**message)
final_text += message_text
final_text += tokenizer.decode([self.start_token_id, self.bot_token_id])
return final_text.strip()
def generate(model, tokenizer, prompt, generation_config):
data = tokenizer(prompt, return_tensors="pt")
data = {k: v.to(model.device) for k, v in data.items()}
output_ids = model.generate(
**data,
generation_config=generation_config
)[0]
output_ids = output_ids[len(data["input_ids"][0]):]
output = tokenizer.decode(output_ids, skip_special_tokens=True)
return output.strip()
config = PeftConfig.from_pretrained(MODEL_NAME)
# Use GPU if available, else fall back to CPU
device = "cuda" if torch.cuda.is_available() else "cpu"
model = AutoModelForCausalLM.from_pretrained(
config.base_model_name_or_path,
load_in_8bit=True,
torch_dtype=torch.float16,
device_map=device
)
model = PeftModel.from_pretrained(
model,
MODEL_NAME,
torch_dtype=torch.float16
)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=False)
generation_config = GenerationConfig.from_pretrained(MODEL_NAME)
@app.route('/run_inference', methods=['POST'])
def run_inference():
try:
data = request.json
inputs = data.get('inputs', [])
conversation = Conversation()
outputs = []
for inp in inputs:
conversation.add_user_message(inp)
prompt = conversation.get_prompt(tokenizer)
output = generate(model, tokenizer, prompt, generation_config)
outputs.append({'input': inp, 'output': output})
return jsonify(outputs)
except Exception as e:
return jsonify({'error': str(e)}), 500
if __name__ == '__main__':
app.run(port=7860)