Spaces:
Sleeping
Sleeping
v1.1 only cbg search index
Browse files
app.py
CHANGED
@@ -1,152 +1,152 @@
|
|
1 |
-
import time
|
2 |
-
import gradio as gr
|
3 |
-
from datasets import load_dataset
|
4 |
-
import pandas as pd
|
5 |
-
from sentence_transformers import SentenceTransformer
|
6 |
-
from sentence_transformers.quantization import quantize_embeddings
|
7 |
-
import faiss
|
8 |
-
from usearch.index import Index
|
9 |
-
import datetime
|
10 |
-
|
11 |
-
|
12 |
-
# Load titles and texts
|
13 |
-
title_text_dataset = load_dataset("suanan/BP_POC", split="train", num_proc=4).select_columns(["url", "title", "text"])
|
14 |
-
|
15 |
-
# Load the int8 and binary indices. Int8 is loaded as a view to save memory, as we never actually perform search with it.
|
16 |
-
int8_view = Index.restore("index/
|
17 |
-
binary_index: faiss.IndexBinaryFlat = faiss.read_index_binary("index/
|
18 |
-
# binary_ivf: faiss.IndexBinaryIVF = faiss.read_index_binary("BP_ubinary_ivf_faiss_50m.index")
|
19 |
-
|
20 |
-
# Load the SentenceTransformer model for embedding the queries
|
21 |
-
model = SentenceTransformer(
|
22 |
-
"BAAI/bge-m3",
|
23 |
-
prompts={
|
24 |
-
"retrieval": "Represent this sentence for searching relevant passages: ",
|
25 |
-
},
|
26 |
-
default_prompt_name="retrieval",
|
27 |
-
)
|
28 |
-
|
29 |
-
|
30 |
-
def search(query, top_k: int = 100, rescore_multiplier: int = 1, use_approx: bool = False):
|
31 |
-
# 獲取當前時間
|
32 |
-
now = datetime.datetime.now()
|
33 |
-
print(f"當前時間: {now}, 問題: {query}")
|
34 |
-
# 1. Embed the query as float32
|
35 |
-
start_time = time.time()
|
36 |
-
query_embedding = model.encode(query)
|
37 |
-
embed_time = time.time() - start_time
|
38 |
-
|
39 |
-
# 2. Quantize the query to ubinary
|
40 |
-
start_time = time.time()
|
41 |
-
query_embedding_ubinary = quantize_embeddings(query_embedding.reshape(1, -1), "ubinary")
|
42 |
-
quantize_time = time.time() - start_time
|
43 |
-
|
44 |
-
# 3. Search the binary index (either exact or approximate)
|
45 |
-
# index = binary_ivf if use_approx else binary_index
|
46 |
-
index = binary_index
|
47 |
-
start_time = time.time()
|
48 |
-
_scores, binary_ids = index.search(query_embedding_ubinary, top_k * rescore_multiplier)
|
49 |
-
binary_ids = binary_ids[0]
|
50 |
-
search_time = time.time() - start_time
|
51 |
-
|
52 |
-
# 4. Load the corresponding int8 embeddings
|
53 |
-
start_time = time.time()
|
54 |
-
int8_embeddings = int8_view[binary_ids].astype(int)
|
55 |
-
load_time = time.time() - start_time
|
56 |
-
|
57 |
-
# 5. Rescore the top_k * rescore_multiplier using the float32 query embedding and the int8 document embeddings
|
58 |
-
start_time = time.time()
|
59 |
-
scores = query_embedding @ int8_embeddings.T
|
60 |
-
rescore_time = time.time() - start_time
|
61 |
-
|
62 |
-
# 6. Sort the scores and return the top_k
|
63 |
-
start_time = time.time()
|
64 |
-
indices = scores.argsort()[::-1][:top_k]
|
65 |
-
top_k_indices = binary_ids[indices]
|
66 |
-
top_k_scores = scores[indices]
|
67 |
-
top_k_urls, top_k_titles, top_k_texts = zip(
|
68 |
-
*[(title_text_dataset[idx]["url"], title_text_dataset[idx]["title"], title_text_dataset[idx]["text"]) for idx in top_k_indices.tolist()]
|
69 |
-
)
|
70 |
-
df = pd.DataFrame(
|
71 |
-
{"Score": [round(value, 2) for value in top_k_scores], "Url": top_k_urls, "Title": top_k_titles, "Text": top_k_texts}
|
72 |
-
)
|
73 |
-
sort_time = time.time() - start_time
|
74 |
-
|
75 |
-
return df, {
|
76 |
-
"Embed Time": f"{embed_time:.4f} s",
|
77 |
-
"Quantize Time": f"{quantize_time:.4f} s",
|
78 |
-
"Search Time": f"{search_time:.4f} s",
|
79 |
-
"Load Time": f"{load_time:.4f} s",
|
80 |
-
"Rescore Time": f"{rescore_time:.4f} s",
|
81 |
-
"Sort Time": f"{sort_time:.4f} s",
|
82 |
-
"Total search Time": f"{quantize_time + search_time + load_time + rescore_time + sort_time:.4f} s",
|
83 |
-
}
|
84 |
-
def update_info(value):
|
85 |
-
return f"{value}筆顯示出來"
|
86 |
-
|
87 |
-
with gr.Blocks(title="") as demo:
|
88 |
-
gr.Markdown(
|
89 |
-
"""
|
90 |
-
## 官網 Dataset & opensource model BAAI/bge-m3
|
91 |
-
### v1 測試POC
|
92 |
-
|
93 |
-
|
94 |
-
Details:
|
95 |
-
1. 中文搜尋ok,英文像是:iphone 15,embedding的時候沒有轉成小寫,需要 寫成iPhone才可以準確搜尋到
|
96 |
-
2. 環境資源: python 3.10, linux: ubuntu 22.04, only cpu, ram max:7.7GB min:4.5GB 使用以上資源
|
97 |
-
3.
|
98 |
-
|
99 |
-
建立步驟:
|
100 |
-
1. excel 轉成 [dataset](https://huggingface.co/datasets/suanan/BP_POC), 花費約10秒內
|
101 |
-
2. dataset 內 轉成 title & text 做 embedding,以後可以新增keyword
|
102 |
-
3. 之後透過 Quantized Retrieval - Binary Search solution進行搜尋
|
103 |
-
|
104 |
-
|
105 |
-
"""
|
106 |
-
)
|
107 |
-
with gr.Row():
|
108 |
-
with gr.Column(scale=75):
|
109 |
-
query = gr.Textbox(
|
110 |
-
label="官網 Dataset & opensource model BAAI/bge-m3, v1 測試POC",
|
111 |
-
placeholder="輸入搜尋關鍵字或問句",
|
112 |
-
)
|
113 |
-
with gr.Column(scale=25):
|
114 |
-
use_approx = gr.Radio(
|
115 |
-
choices=[("精確搜尋", False), ("相關搜尋", True)],
|
116 |
-
value=False,
|
117 |
-
label="搜尋方法",
|
118 |
-
)
|
119 |
-
|
120 |
-
with gr.Row():
|
121 |
-
with gr.Column(scale=2):
|
122 |
-
top_k = gr.Slider(
|
123 |
-
minimum=10,
|
124 |
-
maximum=1000,
|
125 |
-
step=5,
|
126 |
-
value=100,
|
127 |
-
label="顯示搜尋前幾筆",
|
128 |
-
)
|
129 |
-
info_text = gr.Textbox(value=update_info(top_k.value), interactive=False)
|
130 |
-
with gr.Column(scale=2):
|
131 |
-
rescore_multiplier = gr.Slider(
|
132 |
-
minimum=1,
|
133 |
-
maximum=10,
|
134 |
-
step=1,
|
135 |
-
value=1,
|
136 |
-
label="Rescore multiplier",
|
137 |
-
info="Search for `rescore_multiplier` as many documents to rescore",
|
138 |
-
)
|
139 |
-
|
140 |
-
search_button = gr.Button(value="Search")
|
141 |
-
|
142 |
-
with gr.Row():
|
143 |
-
with gr.Column(scale=4):
|
144 |
-
output = gr.Dataframe(headers=["Score", "Title", "Text"])
|
145 |
-
with gr.Column(scale=1):
|
146 |
-
json = gr.JSON()
|
147 |
-
top_k.change(fn=update_info, inputs=top_k, outputs=info_text)
|
148 |
-
query.submit(search, inputs=[query, top_k, rescore_multiplier, use_approx], outputs=[output, json])
|
149 |
-
search_button.click(search, inputs=[query, top_k, rescore_multiplier, use_approx], outputs=[output, json])
|
150 |
-
|
151 |
-
demo.queue()
|
152 |
-
demo.launch(share=True)
|
|
|
1 |
+
import time
|
2 |
+
import gradio as gr
|
3 |
+
from datasets import load_dataset
|
4 |
+
import pandas as pd
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
from sentence_transformers.quantization import quantize_embeddings
|
7 |
+
import faiss
|
8 |
+
from usearch.index import Index
|
9 |
+
import datetime
|
10 |
+
|
11 |
+
|
12 |
+
# Load titles and texts
|
13 |
+
title_text_dataset = load_dataset("suanan/BP_POC", split="train", num_proc=4).select_columns(["url", "title", "text"])
|
14 |
+
|
15 |
+
# Load the int8 and binary indices. Int8 is loaded as a view to save memory, as we never actually perform search with it.
|
16 |
+
int8_view = Index.restore("index/BP_CBG_int8_usearch_1m.index", view=True)
|
17 |
+
binary_index: faiss.IndexBinaryFlat = faiss.read_index_binary("index/BP_CBG_ubinary_faiss_1m.index")
|
18 |
+
# binary_ivf: faiss.IndexBinaryIVF = faiss.read_index_binary("BP_ubinary_ivf_faiss_50m.index")
|
19 |
+
|
20 |
+
# Load the SentenceTransformer model for embedding the queries
|
21 |
+
model = SentenceTransformer(
|
22 |
+
"BAAI/bge-m3",
|
23 |
+
prompts={
|
24 |
+
"retrieval": "Represent this sentence for searching relevant passages: ",
|
25 |
+
},
|
26 |
+
default_prompt_name="retrieval",
|
27 |
+
)
|
28 |
+
|
29 |
+
|
30 |
+
def search(query, top_k: int = 100, rescore_multiplier: int = 1, use_approx: bool = False):
|
31 |
+
# 獲取當前時間
|
32 |
+
now = datetime.datetime.now()
|
33 |
+
print(f"當前時間: {now}, 問題: {query}")
|
34 |
+
# 1. Embed the query as float32
|
35 |
+
start_time = time.time()
|
36 |
+
query_embedding = model.encode(query)
|
37 |
+
embed_time = time.time() - start_time
|
38 |
+
|
39 |
+
# 2. Quantize the query to ubinary
|
40 |
+
start_time = time.time()
|
41 |
+
query_embedding_ubinary = quantize_embeddings(query_embedding.reshape(1, -1), "ubinary")
|
42 |
+
quantize_time = time.time() - start_time
|
43 |
+
|
44 |
+
# 3. Search the binary index (either exact or approximate)
|
45 |
+
# index = binary_ivf if use_approx else binary_index
|
46 |
+
index = binary_index
|
47 |
+
start_time = time.time()
|
48 |
+
_scores, binary_ids = index.search(query_embedding_ubinary, top_k * rescore_multiplier)
|
49 |
+
binary_ids = binary_ids[0]
|
50 |
+
search_time = time.time() - start_time
|
51 |
+
|
52 |
+
# 4. Load the corresponding int8 embeddings
|
53 |
+
start_time = time.time()
|
54 |
+
int8_embeddings = int8_view[binary_ids].astype(int)
|
55 |
+
load_time = time.time() - start_time
|
56 |
+
|
57 |
+
# 5. Rescore the top_k * rescore_multiplier using the float32 query embedding and the int8 document embeddings
|
58 |
+
start_time = time.time()
|
59 |
+
scores = query_embedding @ int8_embeddings.T
|
60 |
+
rescore_time = time.time() - start_time
|
61 |
+
|
62 |
+
# 6. Sort the scores and return the top_k
|
63 |
+
start_time = time.time()
|
64 |
+
indices = scores.argsort()[::-1][:top_k]
|
65 |
+
top_k_indices = binary_ids[indices]
|
66 |
+
top_k_scores = scores[indices]
|
67 |
+
top_k_urls, top_k_titles, top_k_texts = zip(
|
68 |
+
*[(title_text_dataset[idx]["url"], title_text_dataset[idx]["title"], title_text_dataset[idx]["text"]) for idx in top_k_indices.tolist()]
|
69 |
+
)
|
70 |
+
df = pd.DataFrame(
|
71 |
+
{"Score": [round(value, 2) for value in top_k_scores], "Url": top_k_urls, "Title": top_k_titles, "Text": top_k_texts}
|
72 |
+
)
|
73 |
+
sort_time = time.time() - start_time
|
74 |
+
|
75 |
+
return df, {
|
76 |
+
"Embed Time": f"{embed_time:.4f} s",
|
77 |
+
"Quantize Time": f"{quantize_time:.4f} s",
|
78 |
+
"Search Time": f"{search_time:.4f} s",
|
79 |
+
"Load Time": f"{load_time:.4f} s",
|
80 |
+
"Rescore Time": f"{rescore_time:.4f} s",
|
81 |
+
"Sort Time": f"{sort_time:.4f} s",
|
82 |
+
"Total search Time": f"{quantize_time + search_time + load_time + rescore_time + sort_time:.4f} s",
|
83 |
+
}
|
84 |
+
def update_info(value):
|
85 |
+
return f"{value}筆顯示出來"
|
86 |
+
|
87 |
+
with gr.Blocks(title="") as demo:
|
88 |
+
gr.Markdown(
|
89 |
+
"""
|
90 |
+
## 官網 Dataset & opensource model BAAI/bge-m3
|
91 |
+
### v1 測試POC
|
92 |
+
|
93 |
+
|
94 |
+
Details:
|
95 |
+
1. 中文搜尋ok,英文像是:iphone 15,embedding的時候沒有轉成小寫,需要 寫成iPhone才可以準確搜尋到
|
96 |
+
2. 環境資源: python 3.10, linux: ubuntu 22.04, only cpu, ram max:7.7GB min:4.5GB 使用以上資源
|
97 |
+
3.
|
98 |
+
|
99 |
+
建立步驟:
|
100 |
+
1. excel 轉成 [dataset](https://huggingface.co/datasets/suanan/BP_POC), 花費約10秒內
|
101 |
+
2. dataset 內 轉成 title & text 做 embedding,以後可以新增keyword來加強搜��出來的結果排序往前
|
102 |
+
3. 之後透過 Quantized Retrieval - Binary Search solution進行搜尋
|
103 |
+
|
104 |
+
|
105 |
+
"""
|
106 |
+
)
|
107 |
+
with gr.Row():
|
108 |
+
with gr.Column(scale=75):
|
109 |
+
query = gr.Textbox(
|
110 |
+
label="官網 Dataset & opensource model BAAI/bge-m3, v1 測試POC",
|
111 |
+
placeholder="輸入搜尋關鍵字或問句",
|
112 |
+
)
|
113 |
+
with gr.Column(scale=25):
|
114 |
+
use_approx = gr.Radio(
|
115 |
+
choices=[("精確搜尋", False), ("相關搜尋", True)],
|
116 |
+
value=False,
|
117 |
+
label="搜尋方法",
|
118 |
+
)
|
119 |
+
|
120 |
+
with gr.Row():
|
121 |
+
with gr.Column(scale=2):
|
122 |
+
top_k = gr.Slider(
|
123 |
+
minimum=10,
|
124 |
+
maximum=1000,
|
125 |
+
step=5,
|
126 |
+
value=100,
|
127 |
+
label="顯示搜尋前幾筆",
|
128 |
+
)
|
129 |
+
info_text = gr.Textbox(value=update_info(top_k.value), interactive=False)
|
130 |
+
with gr.Column(scale=2):
|
131 |
+
rescore_multiplier = gr.Slider(
|
132 |
+
minimum=1,
|
133 |
+
maximum=10,
|
134 |
+
step=1,
|
135 |
+
value=1,
|
136 |
+
label="Rescore multiplier",
|
137 |
+
info="Search for `rescore_multiplier` as many documents to rescore",
|
138 |
+
)
|
139 |
+
|
140 |
+
search_button = gr.Button(value="Search")
|
141 |
+
|
142 |
+
with gr.Row():
|
143 |
+
with gr.Column(scale=4):
|
144 |
+
output = gr.Dataframe(headers=["Score", "Title", "Text"])
|
145 |
+
with gr.Column(scale=1):
|
146 |
+
json = gr.JSON()
|
147 |
+
top_k.change(fn=update_info, inputs=top_k, outputs=info_text)
|
148 |
+
query.submit(search, inputs=[query, top_k, rescore_multiplier, use_approx], outputs=[output, json])
|
149 |
+
search_button.click(search, inputs=[query, top_k, rescore_multiplier, use_approx], outputs=[output, json])
|
150 |
+
|
151 |
+
demo.queue()
|
152 |
+
demo.launch(share=True)
|