Spaces:
Sleeping
Sleeping
import time | |
import gradio as gr | |
from datasets import load_dataset | |
import pandas as pd | |
from sentence_transformers import SentenceTransformer | |
from sentence_transformers.quantization import quantize_embeddings | |
import faiss | |
from usearch.index import Index | |
import datetime | |
# Load titles and texts | |
title_text_dataset = load_dataset("suanan/BP_CBG_POC", split="train", num_proc=4).select_columns(["url", "title", "text"]) | |
# Load the int8 and binary indices. Int8 is loaded as a view to save memory, as we never actually perform search with it. | |
int8_view = Index.restore("index/BP_CBG_int8_usearch_1m_v2.index", view=True) | |
binary_index: faiss.IndexBinaryFlat = faiss.read_index_binary("index/BP_CBG_ubinary_faiss_1m_v2.index") | |
# binary_ivf: faiss.IndexBinaryIVF = faiss.read_index_binary("BP_ubinary_ivf_faiss_50m.index") | |
# Load the SentenceTransformer model for embedding the queries | |
model = SentenceTransformer( | |
"BAAI/bge-large-zh-v1.5", | |
prompts={ | |
"retrieval": "Represent this sentence for searching relevant passages: ", | |
}, | |
default_prompt_name="retrieval", | |
) | |
def search(query, top_k: int = 100, rescore_multiplier: int = 1, use_approx: bool = False): | |
# 獲取當前時間 | |
now = datetime.datetime.now() | |
print(f"當前時間: {now}, 問題: {query}") | |
# 1. Embed the query as float32 | |
start_time = time.time() | |
query_embedding = model.encode(query) | |
embed_time = time.time() - start_time | |
# 2. Quantize the query to ubinary | |
start_time = time.time() | |
query_embedding_ubinary = quantize_embeddings(query_embedding.reshape(1, -1), "ubinary") | |
quantize_time = time.time() - start_time | |
# 3. Search the binary index (either exact or approximate) | |
# index = binary_ivf if use_approx else binary_index | |
index = binary_index | |
start_time = time.time() | |
_scores, binary_ids = index.search(query_embedding_ubinary, top_k * rescore_multiplier) | |
binary_ids = binary_ids[0] | |
search_time = time.time() - start_time | |
# 4. Load the corresponding int8 embeddings | |
start_time = time.time() | |
int8_embeddings = int8_view[binary_ids].astype(int) | |
load_time = time.time() - start_time | |
# 5. Rescore the top_k * rescore_multiplier using the float32 query embedding and the int8 document embeddings | |
start_time = time.time() | |
scores = query_embedding @ int8_embeddings.T | |
rescore_time = time.time() - start_time | |
# 6. Sort the scores and return the top_k | |
start_time = time.time() | |
indices = scores.argsort()[::-1][:top_k] | |
top_k_indices = binary_ids[indices] | |
top_k_scores = scores[indices] | |
top_k_urls, top_k_titles, top_k_texts = zip( | |
*[(title_text_dataset[idx]["url"], title_text_dataset[idx]["title"], title_text_dataset[idx]["text"]) for idx in top_k_indices.tolist()] | |
) | |
df = pd.DataFrame( | |
{"Score": [round(value, 2) for value in top_k_scores], "Url": top_k_urls, "Title": top_k_titles, "Text": top_k_texts} | |
) | |
sort_time = time.time() - start_time | |
return df, { | |
"Embed Time": f"{embed_time:.4f} s", | |
"Quantize Time": f"{quantize_time:.4f} s", | |
"Search Time": f"{search_time:.4f} s", | |
"Load Time": f"{load_time:.4f} s", | |
"Rescore Time": f"{rescore_time:.4f} s", | |
"Sort Time": f"{sort_time:.4f} s", | |
"Total search Time": f"{quantize_time + search_time + load_time + rescore_time + sort_time:.4f} s", | |
} | |
def update_info(value): | |
return f"{value}筆顯示出來" | |
with gr.Blocks(title="") as demo: | |
gr.Markdown( | |
""" | |
## 官網 Dataset & opensource model BAAI/bge-m3 | |
### v1 測試POC | |
Details: | |
1. 中文搜尋ok,英文像是:iphone 15,embedding的時候沒有轉成小寫,需要 寫成iPhone才可以準確搜尋到 | |
2. 環境資源: python 3.10, linux: ubuntu 22.04, only cpu, ram max:7.7GB min:4.5GB 使用以上資源 | |
3. | |
建立步驟: | |
1. excel 轉成 [dataset](https://huggingface.co/datasets/suanan/BP_POC) [CBG_dataset](https://huggingface.co/datasets/suanan/BP_CBG_POC), 花費約10秒內 | |
2. dataset 內 轉成 title & text 做 embedding,以後可以新增keyword來加強搜尋出來的結果排序往前 | |
3. 之後透過 Quantized Retrieval - Binary Search solution進行搜尋 | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=75): | |
query = gr.Textbox( | |
label="官網 Dataset & opensource model BAAI/bge-m3, v1 測試POC", | |
placeholder="輸入搜尋關鍵字或問句", | |
) | |
with gr.Column(scale=25): | |
use_approx = gr.Radio( | |
choices=[("精確搜尋", False), ("相關搜尋", True)], | |
value=False, | |
label="搜尋方法", | |
) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
top_k = gr.Slider( | |
minimum=10, | |
maximum=1000, | |
step=5, | |
value=100, | |
label="顯示搜尋前幾筆", | |
) | |
info_text = gr.Textbox(value=update_info(top_k.value), interactive=False) | |
with gr.Column(scale=2): | |
rescore_multiplier = gr.Slider( | |
minimum=1, | |
maximum=10, | |
step=1, | |
value=1, | |
label="Rescore multiplier", | |
info="Search for `rescore_multiplier` as many documents to rescore", | |
) | |
search_button = gr.Button(value="Search") | |
with gr.Row(): | |
with gr.Column(scale=4): | |
output = gr.Dataframe(headers=["Score", "Title", "Text"]) | |
with gr.Column(scale=1): | |
json = gr.JSON() | |
top_k.change(fn=update_info, inputs=top_k, outputs=info_text) | |
query.submit(search, inputs=[query, top_k, rescore_multiplier, use_approx], outputs=[output, json]) | |
search_button.click(search, inputs=[query, top_k, rescore_multiplier, use_approx], outputs=[output, json]) | |
demo.queue() | |
demo.launch(share=True) | |