Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
|
4 |
+
os.system('git clone https://github.com/ggerganov/whisper.cpp.git')
|
5 |
+
os.system('make -C ./whisper.cpp')
|
6 |
+
os.system('bash ./whisper.cpp/models/download-ggml-model.sh small')
|
7 |
+
os.system('bash ./whisper.cpp/models/download-ggml-model.sh base')
|
8 |
+
os.system('bash ./whisper.cpp/models/download-ggml-model.sh medium')
|
9 |
+
os.system('bash ./whisper.cpp/models/download-ggml-model.sh base.en')
|
10 |
+
|
11 |
+
#os.system('./whisper.cpp/main -m whisper.cpp/models/ggml-base.en.bin -f whisper.cpp/samples/jfk.wav')
|
12 |
+
#print("SEURAAVAKSI SMALL TESTI")
|
13 |
+
#os.system('./whisper.cpp/main -m whisper.cpp/models/ggml-small.bin -f whisper.cpp/samples/jfk.wav')
|
14 |
+
#print("MOI")
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
import os
|
19 |
+
|
20 |
+
|
21 |
+
import gradio as gr
|
22 |
+
import os
|
23 |
+
from pathlib import Path
|
24 |
+
import pysrt
|
25 |
+
import pandas as pd
|
26 |
+
import re
|
27 |
+
import time
|
28 |
+
import os
|
29 |
+
|
30 |
+
from pytube import YouTube
|
31 |
+
from transformers import MarianMTModel, MarianTokenizer
|
32 |
+
|
33 |
+
import psutil
|
34 |
+
num_cores = psutil.cpu_count()
|
35 |
+
os.environ["OMP_NUM_THREADS"] = f"{num_cores}"
|
36 |
+
|
37 |
+
|
38 |
+
import torch
|
39 |
+
|
40 |
+
|
41 |
+
finnish_marian_nmt_model = "Helsinki-NLP/opus-mt-tc-big-en-fi"
|
42 |
+
finnish_tokenizer_marian = MarianTokenizer.from_pretrained(finnish_marian_nmt_model, max_length=40)
|
43 |
+
finnish_tokenizer_marian.max_new_tokens = 30
|
44 |
+
finnish_translation_model = MarianMTModel.from_pretrained(finnish_marian_nmt_model)
|
45 |
+
|
46 |
+
swedish_marian_nmt_model = "Helsinki-NLP/opus-mt-en-sv"
|
47 |
+
swedish_tokenizer_marian = MarianTokenizer.from_pretrained(swedish_marian_nmt_model, max_length=40)
|
48 |
+
swedish_tokenizer_marian.max_new_tokens = 30
|
49 |
+
swedish_translation_model = MarianMTModel.from_pretrained(swedish_marian_nmt_model)
|
50 |
+
|
51 |
+
danish_marian_nmt_model = "Helsinki-NLP/opus-mt-en-da"
|
52 |
+
danish_tokenizer_marian = MarianTokenizer.from_pretrained(danish_marian_nmt_model, max_length=40)
|
53 |
+
danish_tokenizer_marian.max_new_tokens = 30
|
54 |
+
danish_translation_model = MarianMTModel.from_pretrained(danish_marian_nmt_model)
|
55 |
+
|
56 |
+
|
57 |
+
translation_models = {
|
58 |
+
"Finnish": [finnish_tokenizer_marian, finnish_translation_model],
|
59 |
+
"Swedish": [swedish_tokenizer_marian, swedish_translation_model],
|
60 |
+
"Danish": [danish_tokenizer_marian, danish_translation_model]
|
61 |
+
}
|
62 |
+
|
63 |
+
whisper_models = ["base", "small", "medium", "base.en"]
|
64 |
+
|
65 |
+
|
66 |
+
source_languages = {
|
67 |
+
"Arabic": "ar",
|
68 |
+
"Asturian ":"st",
|
69 |
+
"Belarusian":"be",
|
70 |
+
"Bulgarian":"bg",
|
71 |
+
"Czech":"cs",
|
72 |
+
"Danish":"da",
|
73 |
+
"German":"de",
|
74 |
+
"Greeek":"el",
|
75 |
+
"English":"en",
|
76 |
+
"Estonian":"et",
|
77 |
+
"Finnish":"fi",
|
78 |
+
"Swedish": "sv",
|
79 |
+
"Spanish":"es",
|
80 |
+
"Let the model analyze": "Let the model analyze"
|
81 |
+
}
|
82 |
+
|
83 |
+
source_languages_2 = {
|
84 |
+
"English":"en",
|
85 |
+
}
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
transcribe_options = dict(beam_size=3, best_of=3, without_timestamps=False)
|
90 |
+
|
91 |
+
|
92 |
+
source_language_list = [key[0] for key in source_languages.items()]
|
93 |
+
source_language_list_2 = [key[0] for key in source_languages_2.items()]
|
94 |
+
translation_models_list = [key[0] for key in translation_models.items()]
|
95 |
+
|
96 |
+
|
97 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
98 |
+
print("DEVICE IS: ")
|
99 |
+
print(device)
|
100 |
+
|
101 |
+
videos_out_path = Path("./videos_out")
|
102 |
+
videos_out_path.mkdir(parents=True, exist_ok=True)
|
103 |
+
|
104 |
+
|
105 |
+
def get_youtube(video_url):
|
106 |
+
yt = YouTube(video_url)
|
107 |
+
abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
|
108 |
+
print("LADATATTU POLKUUN")
|
109 |
+
print(abs_video_path)
|
110 |
+
|
111 |
+
|
112 |
+
return abs_video_path
|
113 |
+
|
114 |
+
def speech_to_text(video_file_path, selected_source_lang, whisper_model):
|
115 |
+
"""
|
116 |
+
# Youtube with translated subtitles using OpenAI Whisper and Opus-MT models.
|
117 |
+
# Currently supports only English audio
|
118 |
+
This space allows you to:
|
119 |
+
1. Download youtube video with a given url
|
120 |
+
2. Watch it in the first video component
|
121 |
+
3. Run automatic speech recognition on the video using Whisper
|
122 |
+
4. Translate the recognized transcriptions to Finnish, Swedish, Danish
|
123 |
+
5. Burn the translations to the original video and watch the video in the 2nd video component
|
124 |
+
|
125 |
+
Speech Recognition is based on OpenAI Whisper https://github.com/openai/whisper
|
126 |
+
"""
|
127 |
+
|
128 |
+
if(video_file_path == None):
|
129 |
+
raise ValueError("Error no video input")
|
130 |
+
print(video_file_path)
|
131 |
+
try:
|
132 |
+
_,file_ending = os.path.splitext(f'{video_file_path}')
|
133 |
+
print(f'file enging is {file_ending}')
|
134 |
+
print("starting conversion to wav")
|
135 |
+
os.system(f'ffmpeg -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{video_file_path.replace(file_ending, ".wav")}"')
|
136 |
+
print("conversion to wav ready")
|
137 |
+
|
138 |
+
|
139 |
+
|
140 |
+
print("starting whisper c++")
|
141 |
+
srt_path = str(video_file_path.replace(file_ending, ".wav")) + ".srt"
|
142 |
+
os.system(f'rm -f {srt_path}')
|
143 |
+
if selected_source_lang == "Let the model analyze":
|
144 |
+
os.system(f'./whisper.cpp/main "{video_file_path.replace(file_ending, ".wav")}" -t 4 -m ./whisper.cpp/models/ggml-{whisper_model}.bin -osrt')
|
145 |
+
else:
|
146 |
+
os.system(f'./whisper.cpp/main "{video_file_path.replace(file_ending, ".wav")}" -t 4 -l {source_languages.get(selected_source_lang)} -m ./whisper.cpp/models/ggml-{whisper_model}.bin -osrt')
|
147 |
+
print("starting whisper done with whisper")
|
148 |
+
except Exception as e:
|
149 |
+
raise RuntimeError("Error converting video to audio")
|
150 |
+
|
151 |
+
try:
|
152 |
+
|
153 |
+
|
154 |
+
df = pd.DataFrame(columns = ['start','end','text'])
|
155 |
+
srt_path = str(video_file_path.replace(file_ending, ".wav")) + ".srt"
|
156 |
+
subs = pysrt.open(srt_path)
|
157 |
+
|
158 |
+
|
159 |
+
objects = []
|
160 |
+
for sub in subs:
|
161 |
+
|
162 |
+
|
163 |
+
start_hours = str(str(sub.start.hours) + "00")[0:2] if len(str(sub.start.hours)) == 2 else str("0" + str(sub.start.hours) + "00")[0:2]
|
164 |
+
end_hours = str(str(sub.end.hours) + "00")[0:2] if len(str(sub.end.hours)) == 2 else str("0" + str(sub.end.hours) + "00")[0:2]
|
165 |
+
|
166 |
+
start_minutes = str(str(sub.start.minutes) + "00")[0:2] if len(str(sub.start.minutes)) == 2 else str("0" + str(sub.start.minutes) + "00")[0:2]
|
167 |
+
end_minutes = str(str(sub.end.minutes) + "00")[0:2] if len(str(sub.end.minutes)) == 2 else str("0" + str(sub.end.minutes) + "00")[0:2]
|
168 |
+
|
169 |
+
start_seconds = str(str(sub.start.seconds) + "00")[0:2] if len(str(sub.start.seconds)) == 2 else str("0" + str(sub.start.seconds) + "00")[0:2]
|
170 |
+
end_seconds = str(str(sub.end.seconds) + "00")[0:2] if len(str(sub.end.seconds)) == 2 else str("0" + str(sub.end.seconds) + "00")[0:2]
|
171 |
+
|
172 |
+
start_millis = str(str(sub.start.milliseconds) + "000")[0:3]
|
173 |
+
end_millis = str(str(sub.end.milliseconds) + "000")[0:3]
|
174 |
+
objects.append([sub.text, f'{start_hours}:{start_minutes}:{start_seconds}.{start_millis}', f'{end_hours}:{end_minutes}:{end_seconds}.{end_millis}'])
|
175 |
+
|
176 |
+
for object in objects:
|
177 |
+
srt_to_df = {
|
178 |
+
'start': [object[1]],
|
179 |
+
'end': [object[2]],
|
180 |
+
'text': [object[0]]
|
181 |
+
}
|
182 |
+
|
183 |
+
df = pd.concat([df, pd.DataFrame(srt_to_df)])
|
184 |
+
|
185 |
+
|
186 |
+
return df
|
187 |
+
|
188 |
+
except Exception as e:
|
189 |
+
raise RuntimeError("Error Running inference with local model", e)
|
190 |
+
|
191 |
+
|
192 |
+
def translate_transcriptions(df, selected_translation_lang_2, selected_source_lang_2):
|
193 |
+
print("IN TRANSLATE")
|
194 |
+
|
195 |
+
if selected_translation_lang_2 is None:
|
196 |
+
selected_translation_lang_2 = 'Finnish'
|
197 |
+
df.reset_index(inplace=True)
|
198 |
+
|
199 |
+
print("Getting models")
|
200 |
+
|
201 |
+
tokenizer_marian = translation_models.get(selected_translation_lang_2)[0]
|
202 |
+
translation_model = translation_models.get(selected_translation_lang_2)[1]
|
203 |
+
|
204 |
+
print("start_translation")
|
205 |
+
translations = []
|
206 |
+
print(df.head())
|
207 |
+
if selected_translation_lang_2 != selected_source_lang_2:
|
208 |
+
print("TRASNLATING")
|
209 |
+
sentences = list(df['text'])
|
210 |
+
sentences = [stringi.replace('[','').replace(']','') for stringi in sentences]
|
211 |
+
translations = translation_model.generate(**tokenizer_marian(sentences, return_tensors="pt", padding=True, truncation=True))
|
212 |
+
print(translations)
|
213 |
+
df['translation'] = translations
|
214 |
+
else:
|
215 |
+
df['translation'] = df['text']
|
216 |
+
print("translations done")
|
217 |
+
|
218 |
+
return (df)
|
219 |
+
|
220 |
+
|
221 |
+
def create_srt_and_burn(df, video_in):
|
222 |
+
|
223 |
+
print("Starting creation of video wit srt")
|
224 |
+
print("video in path is:")
|
225 |
+
print(video_in)
|
226 |
+
|
227 |
+
|
228 |
+
with open('testi.srt','w', encoding="utf-8") as file:
|
229 |
+
for i in range(len(df)):
|
230 |
+
file.write(str(i+1))
|
231 |
+
file.write('\n')
|
232 |
+
start = df.iloc[i]['start']
|
233 |
+
|
234 |
+
|
235 |
+
|
236 |
+
file.write(f"{start}")
|
237 |
+
|
238 |
+
stop = df.iloc[i]['end']
|
239 |
+
|
240 |
+
|
241 |
+
file.write(' --> ')
|
242 |
+
file.write(f"{stop}")
|
243 |
+
file.write('\n')
|
244 |
+
file.writelines(df.iloc[i]['translation'])
|
245 |
+
if int(i) != len(df)-1:
|
246 |
+
file.write('\n\n')
|
247 |
+
|
248 |
+
print("SRT DONE")
|
249 |
+
try:
|
250 |
+
file1 = open('./testi.srt', 'r', encoding="utf-8")
|
251 |
+
Lines = file1.readlines()
|
252 |
+
|
253 |
+
count = 0
|
254 |
+
# Strips the newline character
|
255 |
+
for line in Lines:
|
256 |
+
count += 1
|
257 |
+
print("{}".format(line))
|
258 |
+
|
259 |
+
print(type(video_in))
|
260 |
+
print(video_in)
|
261 |
+
|
262 |
+
video_out = video_in.replace('.mp4', '_out.mp4')
|
263 |
+
print("video_out_path")
|
264 |
+
print(video_out)
|
265 |
+
command = 'ffmpeg -i "{}" -y -vf subtitles=./testi.srt "{}"'.format(video_in, video_out)
|
266 |
+
print(command)
|
267 |
+
os.system(command)
|
268 |
+
return video_out
|
269 |
+
except Exception as e:
|
270 |
+
print(e)
|
271 |
+
return video_out
|
272 |
+
|
273 |
+
|
274 |
+
# ---- Gradio Layout -----
|
275 |
+
video_in = gr.Video(label="Video file", mirror_webcam=False)
|
276 |
+
youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True)
|
277 |
+
video_out = gr.Video(label="Video Out", mirror_webcam=False)
|
278 |
+
|
279 |
+
|
280 |
+
|
281 |
+
df_init = pd.DataFrame(columns=['start','end','text'])
|
282 |
+
df_init_2 = pd.DataFrame(columns=['start','end','text','translation'])
|
283 |
+
selected_translation_lang = gr.Dropdown(choices=translation_models_list, type="value", value="English", label="In which language you want the transcriptions?", interactive=True)
|
284 |
+
|
285 |
+
selected_source_lang = gr.Dropdown(choices=source_language_list, type="value", value="Let the model analyze", label="Spoken language in video", interactive=True)
|
286 |
+
selected_source_lang_2 = gr.Dropdown(choices=source_language_list_2, type="value", value="English", label="Spoken language in video", interactive=True)
|
287 |
+
selected_translation_lang_2 = gr.Dropdown(choices=translation_models_list, type="value", value="English", label="In which language you want the transcriptions?", interactive=True)
|
288 |
+
selected_whisper_model = gr.Dropdown(choices=whisper_models, type="value", value="base", label="Selected Whisper model", interactive=True)
|
289 |
+
|
290 |
+
transcription_df = gr.DataFrame(value=df_init,label="Transcription dataframe", row_count=(0, "dynamic"), max_rows = 10, wrap=True, overflow_row_behaviour='paginate')
|
291 |
+
transcription_and_translation_df = gr.DataFrame(value=df_init_2,label="Transcription and translation dataframe", max_rows = 10, wrap=True, overflow_row_behaviour='paginate')
|
292 |
+
|
293 |
+
|
294 |
+
demo = gr.Blocks(css='''
|
295 |
+
#cut_btn, #reset_btn { align-self:stretch; }
|
296 |
+
#\\31 3 { max-width: 540px; }
|
297 |
+
.output-markdown {max-width: 65ch !important;}
|
298 |
+
''')
|
299 |
+
demo.encrypt = False
|
300 |
+
with demo:
|
301 |
+
transcription_var = gr.Variable()
|
302 |
+
|
303 |
+
with gr.Row():
|
304 |
+
with gr.Column():
|
305 |
+
gr.Markdown('''
|
306 |
+
### This space allows you to:
|
307 |
+
##### 1. Download youtube video with a given URL
|
308 |
+
##### 2. Watch it in the first video component
|
309 |
+
##### 3. Run automatic speech recognition on the video using Whisper (Please remember to select translation language)
|
310 |
+
##### 4. Translate the recognized transcriptions to Finnish, Swedish, Danish
|
311 |
+
##### 5. Burn the translations to the original video and watch the video in the 2nd video component
|
312 |
+
''')
|
313 |
+
|
314 |
+
with gr.Column():
|
315 |
+
gr.Markdown('''
|
316 |
+
### 1. Insert Youtube URL below (Some examples below which I suggest to use for first tests)
|
317 |
+
##### 1. https://www.youtube.com/watch?v=nlMuHtV82q8&ab_channel=NothingforSale24
|
318 |
+
##### 2. https://www.youtube.com/watch?v=JzPfMbG1vrE&ab_channel=ExplainerVideosByLauren
|
319 |
+
##### 3. https://www.youtube.com/watch?v=S68vvV0kod8&ab_channel=Pearl-CohnTelevision
|
320 |
+
''')
|
321 |
+
|
322 |
+
with gr.Row():
|
323 |
+
with gr.Column():
|
324 |
+
youtube_url_in.render()
|
325 |
+
download_youtube_btn = gr.Button("Step 1. Download Youtube video")
|
326 |
+
download_youtube_btn.click(get_youtube, [youtube_url_in], [
|
327 |
+
video_in])
|
328 |
+
print(video_in)
|
329 |
+
|
330 |
+
|
331 |
+
with gr.Row():
|
332 |
+
with gr.Column():
|
333 |
+
video_in.render()
|
334 |
+
with gr.Column():
|
335 |
+
gr.Markdown('''
|
336 |
+
##### Here you can start the transcription and translation process.
|
337 |
+
##### Be aware that processing will last for a while (35 second video took around 20 seconds in my testing and might fail for longer videos)
|
338 |
+
''')
|
339 |
+
selected_source_lang.render()
|
340 |
+
selected_whisper_model.render()
|
341 |
+
transcribe_btn = gr.Button("Step 2. Transcribe audio")
|
342 |
+
transcribe_btn.click(speech_to_text, [video_in, selected_source_lang, selected_whisper_model], transcription_df)
|
343 |
+
|
344 |
+
|
345 |
+
with gr.Row():
|
346 |
+
gr.Markdown('''
|
347 |
+
##### Here you will get transcription output
|
348 |
+
##### ''')
|
349 |
+
|
350 |
+
with gr.Row():
|
351 |
+
with gr.Column():
|
352 |
+
transcription_df.render()
|
353 |
+
|
354 |
+
with gr.Row():
|
355 |
+
with gr.Column():
|
356 |
+
gr.Markdown('''
|
357 |
+
##### Here you will get translated transcriptions.
|
358 |
+
##### Please remember to select Spoken Language and wanted translation language
|
359 |
+
##### ''')
|
360 |
+
selected_source_lang_2.render()
|
361 |
+
selected_translation_lang_2.render()
|
362 |
+
translate_transcriptions_button = gr.Button("Step 3. Translate transcription")
|
363 |
+
translate_transcriptions_button.click(translate_transcriptions, [transcription_df, selected_translation_lang_2, selected_source_lang_2], transcription_and_translation_df)
|
364 |
+
transcription_and_translation_df.render()
|
365 |
+
|
366 |
+
with gr.Row():
|
367 |
+
with gr.Column():
|
368 |
+
gr.Markdown('''
|
369 |
+
##### Now press the Step 4. Button to create output video with translated transcriptions
|
370 |
+
##### ''')
|
371 |
+
translate_and_make_srt_btn = gr.Button("Step 4. Create and burn srt to video")
|
372 |
+
print(video_in)
|
373 |
+
translate_and_make_srt_btn.click(create_srt_and_burn, [transcription_and_translation_df,video_in], [
|
374 |
+
video_out])
|
375 |
+
video_out.render()
|
376 |
+
|
377 |
+
|
378 |
+
demo.launch()
|