Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -94,8 +94,7 @@ transcribe_options = dict(beam_size=3, best_of=3, without_timestamps=False)
|
|
94 |
|
95 |
|
96 |
source_language_list = [key[0] for key in source_languages.items()]
|
97 |
-
|
98 |
-
translation_models_list = [key[0] for key in translation_models.items()]
|
99 |
|
100 |
|
101 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
@@ -193,7 +192,7 @@ def speech_to_text(video_file_path, selected_source_lang, whisper_model):
|
|
193 |
raise RuntimeError("Error Running inference with local model", e)
|
194 |
|
195 |
|
196 |
-
def translate_transcriptions(df, selected_translation_lang_2
|
197 |
if selected_translation_lang_2 is None:
|
198 |
selected_translation_lang_2 = 'English'
|
199 |
df.reset_index(inplace=True)
|
@@ -201,27 +200,27 @@ def translate_transcriptions(df, selected_translation_lang_2, selected_source_la
|
|
201 |
print("start_translation")
|
202 |
translations = []
|
203 |
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
print("translations done")
|
226 |
|
227 |
return (df)
|
@@ -289,10 +288,8 @@ video_out = gr.Video(label="Video Out", mirror_webcam=False)
|
|
289 |
|
290 |
df_init = pd.DataFrame(columns=['start','end','text'])
|
291 |
df_init_2 = pd.DataFrame(columns=['start','end','text','translation'])
|
292 |
-
selected_translation_lang = gr.Dropdown(choices=translation_models_list, type="value", value="English", label="In which language you want the transcriptions?", interactive=True)
|
293 |
|
294 |
selected_source_lang = gr.Dropdown(choices=source_language_list, type="value", value="Let the model analyze", label="Spoken language in video", interactive=True)
|
295 |
-
selected_source_lang_2 = gr.Dropdown(choices=source_language_list_2, type="value", value="English", label="Spoken language in video", interactive=True)
|
296 |
selected_translation_lang_2 = gr.Dropdown(choices=translation_models_list, type="value", value="English", label="In which language you want the transcriptions?", interactive=True)
|
297 |
selected_whisper_model = gr.Dropdown(choices=whisper_models, type="value", value="base", label="Selected Whisper model", interactive=True)
|
298 |
|
@@ -366,10 +363,9 @@ with demo:
|
|
366 |
##### Here you will get translated transcriptions.
|
367 |
##### Please remember to select Spoken Language and wanted translation language
|
368 |
##### ''')
|
369 |
-
selected_source_lang_2.render()
|
370 |
selected_translation_lang_2.render()
|
371 |
translate_transcriptions_button = gr.Button("Step 3. Translate transcription")
|
372 |
-
translate_transcriptions_button.click(translate_transcriptions, [transcription_df, selected_translation_lang_2
|
373 |
transcription_and_translation_df.render()
|
374 |
|
375 |
with gr.Row():
|
|
|
94 |
|
95 |
|
96 |
source_language_list = [key[0] for key in source_languages.items()]
|
97 |
+
translation_models_list = [key[0] for key in DeepL_language_codes_for_translation.items()]
|
|
|
98 |
|
99 |
|
100 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
192 |
raise RuntimeError("Error Running inference with local model", e)
|
193 |
|
194 |
|
195 |
+
def translate_transcriptions(df, selected_translation_lang_2):
|
196 |
if selected_translation_lang_2 is None:
|
197 |
selected_translation_lang_2 = 'English'
|
198 |
df.reset_index(inplace=True)
|
|
|
200 |
print("start_translation")
|
201 |
translations = []
|
202 |
|
203 |
+
|
204 |
+
|
205 |
+
text_combined = ""
|
206 |
+
for i, sentence in enumerate(df['text']):
|
207 |
+
if i == 0:
|
208 |
+
text_combined = sentence
|
209 |
+
else:
|
210 |
+
text_combined = text_combined + '\n' + sentence
|
211 |
+
|
212 |
+
data = {'text': text_combined,
|
213 |
+
'tag_spitting': 'xml',
|
214 |
+
'target_lang': DeepL_language_codes.get(selected_source_lang_2)
|
215 |
+
}
|
216 |
+
response = requests.post('https://api-free.deepl.com/v2/translate', headers=headers, data=data)
|
217 |
+
|
218 |
+
# Print the response from the server
|
219 |
+
translated_sentences = json.loads(response.text)
|
220 |
+
translated_sentences = translated_sentences['translations'][0]['text'].split('\n')
|
221 |
+
df['translation'] = translated_sentences
|
222 |
+
|
223 |
+
|
224 |
print("translations done")
|
225 |
|
226 |
return (df)
|
|
|
288 |
|
289 |
df_init = pd.DataFrame(columns=['start','end','text'])
|
290 |
df_init_2 = pd.DataFrame(columns=['start','end','text','translation'])
|
|
|
291 |
|
292 |
selected_source_lang = gr.Dropdown(choices=source_language_list, type="value", value="Let the model analyze", label="Spoken language in video", interactive=True)
|
|
|
293 |
selected_translation_lang_2 = gr.Dropdown(choices=translation_models_list, type="value", value="English", label="In which language you want the transcriptions?", interactive=True)
|
294 |
selected_whisper_model = gr.Dropdown(choices=whisper_models, type="value", value="base", label="Selected Whisper model", interactive=True)
|
295 |
|
|
|
363 |
##### Here you will get translated transcriptions.
|
364 |
##### Please remember to select Spoken Language and wanted translation language
|
365 |
##### ''')
|
|
|
366 |
selected_translation_lang_2.render()
|
367 |
translate_transcriptions_button = gr.Button("Step 3. Translate transcription")
|
368 |
+
translate_transcriptions_button.click(translate_transcriptions, [transcription_df, selected_translation_lang_2], transcription_and_translation_df)
|
369 |
transcription_and_translation_df.render()
|
370 |
|
371 |
with gr.Row():
|