Spaces:
Runtime error
Runtime error
import os | |
import requests | |
import json | |
import base64 | |
os.system('git clone https://github.com/ggerganov/whisper.cpp.git') | |
os.system('make -C ./whisper.cpp') | |
os.system('bash ./whisper.cpp/models/download-ggml-model.sh small') | |
os.system('bash ./whisper.cpp/models/download-ggml-model.sh base') | |
os.system('bash ./whisper.cpp/models/download-ggml-model.sh medium') | |
os.system('bash ./whisper.cpp/models/download-ggml-model.sh large') | |
os.system('bash ./whisper.cpp/models/download-ggml-model.sh base.en') | |
import gradio as gr | |
from pathlib import Path | |
import pysrt | |
import pandas as pd | |
import re | |
import time | |
from pytube import YouTube | |
headers = {'Authorization': os.environ['DeepL_API_KEY']} | |
import torch | |
whisper_models = ["base", "small", "medium", "large", "base.en"] | |
custom_models = ["belarus-small"] | |
combined_models = [] | |
combined_models.extend(whisper_models) | |
combined_models.extend(custom_models) | |
usage = requests.get('https://api-free.deepl.com/v2/usage', headers=headers) | |
usage = json.loads(usage.text) | |
deepL_character_usage = str(usage['character_count']) | |
print("deepL_character_usage") | |
LANGUAGES = { | |
"en": "English", | |
"zh": "Chinese", | |
"de": "German", | |
"es": "Spanish", | |
"ru": "Russian", | |
"ko": "Korean", | |
"fr": "French", | |
"ja": "Japanese", | |
"pt": "Portuguese", | |
"tr": "Turkish", | |
"pl": "Polish", | |
"ca": "Catalan", | |
"nl": "Dutch", | |
"ar": "Arabic", | |
"sv": "Swedish", | |
"it": "Italian", | |
"id": "Indonesian", | |
"hi": "Hindi", | |
"fi": "Finnish", | |
"vi": "Vietnamese", | |
"he": "Hebrew", | |
"uk": "Ukrainian", | |
"el": "Greek", | |
"ms": "Malay", | |
"cs": "Czech", | |
"ro": "Romanian", | |
"da": "Danish", | |
"hu": "Hungarian", | |
"ta": "Tamil", | |
"no": "Norwegian", | |
"th": "Thai", | |
"ur": "Urdu", | |
"hr": "Croatian", | |
"bg": "Bulgarian", | |
"lt": "Lithuanian", | |
"la": "Latin", | |
"mi": "Maori", | |
"ml": "Malayalam", | |
"cy": "Welsh", | |
"sk": "Slovak", | |
"te": "Telugu", | |
"fa": "Persian", | |
"lv": "Latvian", | |
"bn": "Bengali", | |
"sr": "Serbian", | |
"az": "Azerbaijani", | |
"sl": "Slovenian", | |
"kn": "Kannada", | |
"et": "Estonian", | |
"mk": "Macedonian", | |
"br": "Breton", | |
"eu": "Basque", | |
"is": "Icelandic", | |
"hy": "Armenian", | |
"ne": "Nepali", | |
"mn": "Mongolian", | |
"bs": "Bosnian", | |
"kk": "Kazakh", | |
"sq": "Albanian", | |
"sw": "Swahili", | |
"gl": "Galician", | |
"mr": "Marathi", | |
"pa": "Punjabi", | |
"si": "Sinhala", | |
"km": "Khmer", | |
"sn": "Shona", | |
"yo": "Yoruba", | |
"so": "Somali", | |
"af": "Afrikaans", | |
"oc": "Occitan", | |
"ka": "Georgian", | |
"be": "Belarusian", | |
"tg": "Tajik", | |
"sd": "Sindhi", | |
"gu": "Gujarati", | |
"am": "Amharic", | |
"yi": "Yiddish", | |
"lo": "Lao", | |
"uz": "Uzbek", | |
"fo": "Faroese", | |
"ht": "Haitian creole", | |
"ps": "Pashto", | |
"tk": "Turkmen", | |
"nn": "Nynorsk", | |
"mt": "Maltese", | |
"sa": "Sanskrit", | |
"lb": "Luxembourgish", | |
"my": "Myanmar", | |
"bo": "Tibetan", | |
"tl": "Tagalog", | |
"mg": "Malagasy", | |
"as": "Assamese", | |
"tt": "Tatar", | |
"haw": "Hawaiian", | |
"ln": "Lingala", | |
"ha": "Hausa", | |
"ba": "Bashkir", | |
"jw": "Javanese", | |
"su": "Sundanese", | |
} | |
# language code lookup by name, with a few language aliases | |
source_languages = { | |
**{language: code for code, language in LANGUAGES.items()}, | |
"Burmese": "my", | |
"Valencian": "ca", | |
"Flemish": "nl", | |
"Haitian": "ht", | |
"Letzeburgesch": "lb", | |
"Pushto": "ps", | |
"Panjabi": "pa", | |
"Moldavian": "ro", | |
"Moldovan": "ro", | |
"Sinhalese": "si", | |
"Castilian": "es", | |
"Let the model analyze": "Let the model analyze" | |
} | |
DeepL_language_codes_for_translation = { | |
"Bulgarian": "BG", | |
"Czech": "CS", | |
"Danish": "DA", | |
"German": "DE", | |
"Greek": "EL", | |
"English": "EN", | |
"Spanish": "ES", | |
"Estonian": "ET", | |
"Finnish": "FI", | |
"French": "FR", | |
"Hungarian": "HU", | |
"Indonesian": "ID", | |
"Italian": "IT", | |
"Japanese": "JA", | |
"Lithuanian": "LT", | |
"Latvian": "LV", | |
"Dutch": "NL", | |
"Polish": "PL", | |
"Portuguese": "PT", | |
"Romanian": "RO", | |
"Russian": "RU", | |
"Slovak": "SK", | |
"Slovenian": "SL", | |
"Swedish": "SV", | |
"Turkish": "TR", | |
"Ukrainian": "UK", | |
"Chinese": "ZH" | |
} | |
transcribe_options = dict(beam_size=3, best_of=3, without_timestamps=False) | |
source_language_list = [key[0] for key in source_languages.items()] | |
translation_models_list = [key[0] for key in DeepL_language_codes_for_translation.items()] | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print("DEVICE IS: ") | |
print(device) | |
videos_out_path = Path("./videos_out") | |
videos_out_path.mkdir(parents=True, exist_ok=True) | |
def get_youtube(video_url): | |
yt = YouTube(video_url) | |
abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download() | |
print("LADATATTU POLKUUN") | |
print(abs_video_path) | |
return abs_video_path | |
def speech_to_text(video_file_path, selected_source_lang, whisper_model): | |
""" | |
# Youtube with translated subtitles using OpenAI Whisper and Opus-MT models. | |
# Currently supports only English audio | |
This space allows you to: | |
1. Download youtube video with a given url | |
2. Watch it in the first video component | |
3. Run automatic speech recognition on the video using fast Whisper models | |
4. Translate the recognized transcriptions to 26 languages supported by deepL (If free API usage for the month is not yet fully consumed) | |
5. Download generated subtitles in .vtt and .srt formats | |
6. Watch the the original video with generated subtitles | |
Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper | |
This space is using c++ implementation by https://github.com/ggerganov/whisper.cpp | |
""" | |
if(video_file_path == None): | |
raise ValueError("Error no video input") | |
print(video_file_path) | |
try: | |
_,file_ending = os.path.splitext(f'{video_file_path}') | |
print(f'file enging is {file_ending}') | |
print("starting conversion to wav") | |
os.system(f'ffmpeg -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{video_file_path.replace(file_ending, ".wav")}"') | |
print("conversion to wav ready") | |
except Exception as e: | |
raise RuntimeError("Error Running inference with local model", e) | |
try: | |
print("starting whisper c++") | |
srt_path = str(video_file_path.replace(file_ending, ".wav")) + ".srt" | |
os.system(f'rm -f {srt_path}') | |
if selected_source_lang == "Let the model analyze": | |
os.system(f'./whisper.cpp/main "{video_file_path.replace(file_ending, ".wav")}" -t 4 -l "auto" -m ./whisper.cpp/models/ggml-{whisper_model}.bin -osrt') | |
else: | |
if whisper_model in custom_models: | |
os.system(f'./whisper.cpp/main "{video_file_path.replace(file_ending, ".wav")}" -t 4 -l {source_languages.get(selected_source_lang)} -m ./converted_models/ggml-{whisper_model}.bin -osrt') | |
else: | |
os.system(f'./whisper.cpp/main "{video_file_path.replace(file_ending, ".wav")}" -t 4 -l {source_languages.get(selected_source_lang)} -m ./whisper.cpp/models/ggml-{whisper_model}.bin -osrt') | |
print("starting whisper done with whisper") | |
except Exception as e: | |
raise RuntimeError("Error running Whisper cpp model") | |
try: | |
df = pd.DataFrame(columns = ['start','end','text']) | |
srt_path = str(video_file_path.replace(file_ending, ".wav")) + ".srt" | |
subs = pysrt.open(srt_path) | |
objects = [] | |
for sub in subs: | |
start_hours = str(str(sub.start.hours) + "00")[0:2] if len(str(sub.start.hours)) == 2 else str("0" + str(sub.start.hours) + "00")[0:2] | |
end_hours = str(str(sub.end.hours) + "00")[0:2] if len(str(sub.end.hours)) == 2 else str("0" + str(sub.end.hours) + "00")[0:2] | |
start_minutes = str(str(sub.start.minutes) + "00")[0:2] if len(str(sub.start.minutes)) == 2 else str("0" + str(sub.start.minutes) + "00")[0:2] | |
end_minutes = str(str(sub.end.minutes) + "00")[0:2] if len(str(sub.end.minutes)) == 2 else str("0" + str(sub.end.minutes) + "00")[0:2] | |
start_seconds = str(str(sub.start.seconds) + "00")[0:2] if len(str(sub.start.seconds)) == 2 else str("0" + str(sub.start.seconds) + "00")[0:2] | |
end_seconds = str(str(sub.end.seconds) + "00")[0:2] if len(str(sub.end.seconds)) == 2 else str("0" + str(sub.end.seconds) + "00")[0:2] | |
start_millis = str(str(sub.start.milliseconds) + "000")[0:3] | |
end_millis = str(str(sub.end.milliseconds) + "000")[0:3] | |
objects.append([sub.text, f'{start_hours}:{start_minutes}:{start_seconds}.{start_millis}', f'{end_hours}:{end_minutes}:{end_seconds}.{end_millis}']) | |
for object in objects: | |
srt_to_df = { | |
'start': [object[1]], | |
'end': [object[2]], | |
'text': [object[0]] | |
} | |
df = pd.concat([df, pd.DataFrame(srt_to_df)]) | |
except Exception as e: | |
print("Error creating srt df") | |
try: | |
usage = requests.get('https://api-free.deepl.com/v2/usage', headers=headers) | |
usage = json.loads(usage.text) | |
char_count = str(usage['character_count']) | |
print('Usage is at: ' + str(usage['character_count']) + ' characters') | |
if usage['character_count'] >= 490000: | |
print("USAGE CLOSE TO LIMIT") | |
except Exception as e: | |
print('Error with DeepL API requesting usage count') | |
return df | |
def translate_transcriptions(df, selected_translation_lang_2): | |
if selected_translation_lang_2 is None: | |
selected_translation_lang_2 = 'English' | |
df.reset_index(inplace=True) | |
print("start_translation") | |
translations = [] | |
text_combined = "" | |
for i, sentence in enumerate(df['text']): | |
if i == 0: | |
text_combined = sentence | |
else: | |
text_combined = text_combined + '\n' + sentence | |
data = {'text': text_combined, | |
'tag_spitting': 'xml', | |
'target_lang': DeepL_language_codes_for_translation.get(selected_translation_lang_2) | |
} | |
try: | |
usage = requests.get('https://api-free.deepl.com/v2/usage', headers=headers) | |
usage = json.loads(usage.text) | |
deepL_character_usage = str(usage['character_count']) | |
try: | |
print('Usage is at: ' + deepL_character_usage + 'characters') | |
except Exception as e: | |
print(e) | |
if int(deepL_character_usage) <= 490000: | |
print("STILL CHARACTERS LEFT") | |
response = requests.post('https://api-free.deepl.com/v2/translate', headers=headers, data=data) | |
# Print the response from the server | |
translated_sentences = json.loads(response.text) | |
translated_sentences = translated_sentences['translations'][0]['text'].split('\n') | |
df['translation'] = translated_sentences | |
else: | |
df['translation'] = df['text'] | |
except Exception as e: | |
print("EXCEPTION WITH DEEPL API") | |
print(e) | |
df['translation'] = df['text'] | |
print("translations done") | |
print("Starting SRT-file creation") | |
print(df.head()) | |
df.reset_index(inplace=True) | |
with open('subtitles.vtt','w', encoding="utf-8") as file: | |
print("Starting WEBVTT-file creation") | |
for i in range(len(df)): | |
if i == 0: | |
file.write('WEBVTT') | |
file.write('\n') | |
else: | |
file.write(str(i+1)) | |
file.write('\n') | |
start = df.iloc[i]['start'] | |
file.write(f"{start.strip()}") | |
stop = df.iloc[i]['end'] | |
file.write(' --> ') | |
file.write(f"{stop}") | |
file.write('\n') | |
file.writelines(df.iloc[i]['translation']) | |
if int(i) != len(df)-1: | |
file.write('\n\n') | |
print("WEBVTT DONE") | |
with open('subtitles.srt','w', encoding="utf-8") as file: | |
print("Starting SRT-file creation") | |
for i in range(len(df)): | |
file.write(str(i+1)) | |
file.write('\n') | |
start = df.iloc[i]['start'] | |
file.write(f"{start.strip()}") | |
stop = df.iloc[i]['end'] | |
file.write(' --> ') | |
file.write(f"{stop}") | |
file.write('\n') | |
file.writelines(df.iloc[i]['translation']) | |
if int(i) != len(df)-1: | |
file.write('\n\n') | |
print("SRT DONE") | |
subtitle_files = ['subtitles.vtt','subtitles.srt'] | |
return df, subtitle_files | |
# def burn_srt_to_video(srt_file, video_in): | |
# print("Starting creation of video wit srt") | |
# try: | |
# video_out = video_in.replace('.mp4', '_out.mp4') | |
# print(os.system('ls -lrth')) | |
# print(video_in) | |
# print(video_out) | |
# command = 'ffmpeg -i "{}" -y -vf subtitles=./subtitles.srt "{}"'.format(video_in, video_out) | |
# os.system(command) | |
# return video_out | |
# except Exception as e: | |
# print(e) | |
# return video_out | |
def create_video_player(subtitle_files, video_in): | |
with open(video_in, "rb") as file: | |
video_base64 = base64.b64encode(file.read()) | |
with open('./subtitles.vtt', "rb") as file: | |
subtitle_base64 = base64.b64encode(file.read()) | |
video_player = f'''<video id="video" controls preload="metadata"> | |
<source src="data:video/mp4;base64,{str(video_base64)[2:-1]}" type="video/mp4" /> | |
<track | |
label="English" | |
kind="subtitles" | |
srclang="en" | |
src="data:text/vtt;base64,{str(subtitle_base64)[2:-1]}" | |
default /> | |
</video> | |
''' | |
#video_player = gr.HTML(video_player) | |
return video_player | |
# ---- Gradio Layout ----- | |
video_in = gr.Video(label="Video file", mirror_webcam=False) | |
youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True) | |
video_out = gr.Video(label="Video Out", mirror_webcam=False) | |
df_init = pd.DataFrame(columns=['start','end','text', 'translation']) | |
selected_source_lang = gr.Dropdown(choices=source_language_list, type="value", value="Let the model analyze", label="Spoken language in video", interactive=True) | |
selected_translation_lang_2 = gr.Dropdown(choices=translation_models_list, type="value", value="English", label="In which language you want the transcriptions?", interactive=True) | |
selected_whisper_model = gr.Dropdown(choices=whisper_models, type="value", value="base", label="Selected Whisper model", interactive=True) | |
transcription_df = gr.DataFrame(value=df_init,label="Transcription dataframe", row_count=(0, "dynamic"), max_rows = 10, wrap=True, overflow_row_behaviour='paginate') | |
transcription_and_translation_df = gr.DataFrame(value=df_init,label="Transcription and translation dataframe", max_rows = 10, wrap=True, overflow_row_behaviour='paginate') | |
subtitle_files = gr.File( | |
label="Download srt-file", | |
file_count="multiple", | |
type="file", | |
interactive=False, | |
) | |
video_player = gr.HTML('<p>video will be played here after you press the button at step 4') | |
demo = gr.Blocks(css=''' | |
#cut_btn, #reset_btn { align-self:stretch; } | |
#\\31 3 { max-width: 540px; } | |
.output-markdown {max-width: 65ch !important;} | |
''') | |
demo.encrypt = False | |
with demo: | |
transcription_var = gr.Variable() | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown(''' | |
### This space allows you to: | |
1. Download youtube video with a given url | |
2. Watch it in the first video component | |
3. Run automatic speech recognition on the video using fast Whisper models | |
4. Translate the recognized transcriptions to 26 languages supported by deepL | |
5. Download generated subtitles in .vtt and .srt formats | |
6. Watch the the original video with generated subtitles | |
''') | |
with gr.Column(): | |
gr.Markdown(''' | |
### 1. Copy any non-private Youtube video URL to box below or click one of the examples. | |
(But please **consider using short videos** so others won't get queued) <br> | |
Then press button "1. Download Youtube video"-button: | |
''') | |
examples = gr.Examples(examples= | |
[ "https://www.youtube.com/watch?v=nlMuHtV82q8&ab_channel=NothingforSale24", | |
"https://www.youtube.com/watch?v=JzPfMbG1vrE&ab_channel=ExplainerVideosByLauren", | |
"https://www.youtube.com/watch?v=S68vvV0kod8&ab_channel=Pearl-CohnTelevision"], | |
label="Examples", inputs=[youtube_url_in]) | |
# Inspiration from https://huggingface.co/spaces/vumichien/whisper-speaker-diarization | |
with gr.Row(): | |
with gr.Column(): | |
youtube_url_in.render() | |
download_youtube_btn = gr.Button("Step 1. Download Youtube video") | |
download_youtube_btn.click(get_youtube, [youtube_url_in], [ | |
video_in]) | |
print(video_in) | |
with gr.Row(): | |
with gr.Column(): | |
video_in.render() | |
with gr.Column(): | |
gr.Markdown(''' | |
##### Here you can start the transcription and translation process. | |
Be aware that processing will last some time. With base model it is around 3x speed | |
**Please select source language** for better transcriptions. Using 'Let the model analyze' makes mistakes sometimes and may lead to bad transcriptions | |
''') | |
selected_source_lang.render() | |
selected_whisper_model.render() | |
transcribe_btn = gr.Button("Step 2. Transcribe audio") | |
transcribe_btn.click(speech_to_text, [video_in, selected_source_lang, selected_whisper_model], [transcription_df]) | |
with gr.Row(): | |
gr.Markdown(''' | |
##### Here you will get transcription output | |
##### ''') | |
with gr.Row(): | |
with gr.Column(): | |
transcription_df.render() | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown(''' | |
### PLEASE READ BELOW | |
### Because of big demand for this demo all credits are already gone for translation :( | |
### I might make some adjustments in the future for the translation to use some other model if all the API credits have been used but this is the situation for now | |
### Translation credits will reset every 5th of month. | |
Here you will can translate transcriptions to 26 languages. | |
If spoken language is not in the list, translation might not work. In this case original transcriptions are used. | |
''') | |
gr.Markdown(f''' | |
DeepL API character usage: | |
{deepL_character_usage if deepL_character_usage is not None else ''}/500 000 characters | |
If usage is over 490 000 characters original transcriptions will be used for subtitles. | |
API usage resets on 5th of every month. | |
''') | |
selected_translation_lang_2.render() | |
translate_transcriptions_button = gr.Button("Step 3. Translate transcription") | |
translate_transcriptions_button.click(translate_transcriptions, [transcription_df, selected_translation_lang_2], [transcription_and_translation_df, subtitle_files]) | |
transcription_and_translation_df.render() | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown('''##### From here you can download subtitles in .srt or .vtt format''') | |
subtitle_files.render() | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown(''' | |
##### Now press the Step 4. Button to create output video with translated transcriptions | |
##### ''') | |
create_video_button = gr.Button("Step 4. Create and add subtitles to video") | |
print(video_in) | |
create_video_button.click(create_video_player, [subtitle_files,video_in], [ | |
video_player]) | |
video_player.render() | |
demo.launch() |