|
import os; import json; import requests |
|
import streamlit as st; from transformers import pipeline |
|
ES_URL = os.environ.get("ES_URL") |
|
|
|
question = 'What is the capital of Netherlands?' |
|
query_text = 'Query used for search or question answering (you can also edit, and experiment with the anwers)' |
|
written_question = st.text_input(query_text, question) |
|
if written_question: |
|
question = written_question |
|
|
|
if st.button('Run semantic question answering'): |
|
if question: |
|
try: |
|
url = f"{ES_URL}/document/_search?pretty" |
|
|
|
payload = json.dumps({"query": { |
|
"more_like_this": { "like": question, |
|
"fields": ["content"], "min_term_freq": 1.9, "min_doc_freq": 4, "max_query_terms": 50 |
|
}}}) |
|
headers = {'Content-Type': 'application/json'} |
|
response = requests.request("GET", url, headers=headers, data=payload) |
|
kws_result = response.json() |
|
|
|
except Exception as e: |
|
qa_result = str(e) |
|
|
|
top_5_hits = kws_result['hits']['hits'][:5] |
|
top_5_text = [{'text': hit['_source']['content'][:500], |
|
'confidence': hit['_score']} for hit in top_5_hits ] |
|
top_3_para = [hit['_source']['content'][:5000] for hit in top_5_hits[:3]] |
|
|
|
|
|
DPR_MODEL = "deepset/roberta-base-squad2" |
|
pipe_exqa = pipeline("question-answering", model=DPR_MODEL) |
|
|
|
qa_results = [pipe_exqa(question=question, context=paragraph) for paragraph in top_3_para] |
|
|
|
for i, qa_result in enumerate(qa_results): |
|
if "answer" in qa_result.keys(): |
|
answer_span, answer_score = qa_result["answer"], qa_result["score"] |
|
st.write(f'Answer: **{answer_span}**') |
|
paragraph = top_3_para[i] |
|
start_par, stop_para = max(0, qa_result["start"]-86), min(qa_result["end"]+90, len(paragraph)) |
|
answer_context = paragraph[start_par:stop_para].replace(answer_span, f'**{answer_span}**') |
|
qa_result.update({'context': answer_context, 'paragraph': paragraph}) |
|
st.write(f'Answer context (and score): ... _{answer_context}_ ...') |
|
color_string = 'green' if answer_score > 0.65 else 'orange' if answer_score > 0.45 else 'red' |
|
|
|
st.markdown(f'(answer confidence: :{color_string}[{format(answer_score, ".3f")}])') |
|
|
|
st.write(f'Answers JSON: '); st.write(qa_results) |
|
|
|
for i, doc_hit in enumerate(top_5_text): |
|
st.subheader(f'Search result #{i+1} (and score):') |
|
st.write(f'<em>{doc_hit["text"]}...</em>', unsafe_allow_html = True) |
|
st.markdown(f'> (*confidence score*: **{format(doc_hit["confidence"], ".3f")}**)') |
|
|
|
st.write(f'Search results JSON: '); st.write(top_5_text) |
|
else: |
|
st.write('Write a query to submit your keyword search'); st.stop() |
|
|
|
|
|
|
|
|
|
if st.button('Run syntactic keyword search'): |
|
if question: |
|
try: |
|
url = f"{ES_URL}/document/_search?pretty" |
|
|
|
payload = json.dumps({"query": { |
|
"more_like_this": { "like": question, |
|
"fields": ["content"], "min_term_freq": 1.9, "min_doc_freq": 4, "max_query_terms": 50 |
|
}}}) |
|
headers = {'Content-Type': 'application/json'} |
|
response = requests.request("GET", url, headers=headers, data=payload) |
|
kws_result = response.json() |
|
|
|
|
|
except Exception as e: |
|
qa_result = str(e) |
|
|
|
top_5_hits = kws_result['hits']['hits'][:5] |
|
top_5_text = [{'text': hit['_source']['content'][:500], |
|
'confidence': hit['_score']} for hit in top_5_hits ] |
|
|
|
for i, doc_hit in enumerate(top_5_text): |
|
st.subheader(f'Search result #{i+1} (and score):') |
|
st.write(f'<em>{doc_hit["text"]}...</em>', unsafe_allow_html = True) |
|
st.markdown(f'> (*confidence score*: **{format(doc_hit["confidence"], ".3f")}**)') |
|
|
|
st.write(f'Answer JSON: '); st.write(top_5_text) |
|
else: |
|
st.write('Write a query to submit your keyword search'); st.stop() |
|
|
|
|