|
""" |
|
This module defines the GlassdoorReviewsClassifier class, which is a neural |
|
network model for classifying Glassdoor reviews into sentiment categories. The |
|
model uses a pre-trained BERT model as the base and adds a custom classifier |
|
on top. |
|
""" |
|
|
|
import torch.nn as nn |
|
from transformers import BertModel |
|
|
|
from config import BERTIMBAU_MODEL |
|
|
|
|
|
class GlassdoorReviewsClassifier(nn.Module): |
|
""" |
|
GlassdoorReviewsClassifier is a neural network model for classifying |
|
Glassdoor reviews into sentiment categories. It uses a pre-trained BERT |
|
model as the base and adds a custom classifier on top. |
|
|
|
Attributes: |
|
bert (BertModel): Pre-trained BERT model for encoding input text. |
|
classifier (nn.Sequential): Custom classifier for sentiment |
|
classification. |
|
""" |
|
|
|
def __init__(self): |
|
super(GlassdoorReviewsClassifier, self).__init__() |
|
|
|
self.bert = BertModel.from_pretrained(BERTIMBAU_MODEL) |
|
self.classifier = nn.Sequential( |
|
nn.Linear(self.bert.config.hidden_size, 300), |
|
nn.ReLU(), |
|
nn.Linear(300, 100), |
|
nn.ReLU(), |
|
nn.Linear(100, 50), |
|
nn.ReLU(), |
|
nn.Linear(50, 3), |
|
) |
|
|
|
def forward(self, input_ids, attention_mask): |
|
""" |
|
Forward pass for the model. |
|
|
|
Args: |
|
input_ids (torch.Tensor): Tensor of input token IDs. |
|
attention_mask (torch.Tensor): Tensor of attention masks. |
|
|
|
Returns: |
|
torch.Tensor: Output logits from the classifier. |
|
""" |
|
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask) |
|
x = outputs["last_hidden_state"][:, 0, :] |
|
x = self.classifier(x) |
|
return x |
|
|