Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
df = pd.read_csv('https://huggingface.co/datasets/stevhliu/quantization/raw/main/quantization.csv') | |
def filter_by_hardware_or_bits(df, hardware=None, bits=None): | |
if hardware is None and bits is None: | |
raise ValueError("At least one of 'hardware' or 'bits' must be specified.") | |
hardware_mask = df['hardware'] == hardware if hardware is not None else pd.Series([True] * len(df)) | |
bits_mask = df['bits'] == bits if bits is not None else pd.Series([True] * len(df)) | |
combined_mask = hardware_mask & bits_mask | |
filtered_df = df[combined_mask] | |
return filtered_df | |
def filter_dataframe(hardware, bits): | |
filtered_df = filter_by_hardware_or_bits(df, hardware=hardware, bits=bits) | |
return filtered_df | |
demo = gr.Interface( | |
fn=filter_dataframe, | |
inputs=[ | |
gr.Dropdown(choices=df['hardware'].unique().tolist(), label="hardware"), | |
gr.Dropdown(choices=df['bits'].unique().tolist(), label="bits"), | |
], | |
outputs=gr.Dataframe(headers=list(df.columns)), | |
title="Quantization methods", | |
description="Pick a quantization method based on your hardware and k-bit quantization." | |
) | |
demo.launch() |