Spaces:
Runtime error
Runtime error
stevenkolawole
commited on
Commit
•
f1984f7
1
Parent(s):
0a91998
create application file
Browse files- app.py +97 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from huggingface_hub import snapshot_download
|
3 |
+
|
4 |
+
import os # utility library
|
5 |
+
|
6 |
+
# libraries to load the model and serve inference
|
7 |
+
import tensorflow_text
|
8 |
+
import tensorflow as tf
|
9 |
+
|
10 |
+
|
11 |
+
def main():
|
12 |
+
st.title("Interactive demo: T5 Multitasking Demo")
|
13 |
+
st.write("**Demo for T5's different tasks including machine translation, \
|
14 |
+
text summarization, document similarity, and grammatical correctness of sentences.**")
|
15 |
+
load_model_cache()
|
16 |
+
dashboard()
|
17 |
+
|
18 |
+
|
19 |
+
@st.cache
|
20 |
+
def load_model_cache():
|
21 |
+
"""Function to retrieve the model from HuggingFace Hub, load it and cache it using st.cache wrapper
|
22 |
+
"""
|
23 |
+
CACHE_DIR = "hfhub_cache" # where the library's fork would be stored once downloaded
|
24 |
+
if not os.path.exists(CACHE_DIR):
|
25 |
+
os.mkdir(CACHE_DIR)
|
26 |
+
|
27 |
+
# download the files from huggingface repo and load the model with tensorflow
|
28 |
+
snapshot_download(repo_id="stevekola/T5", cache_dir=CACHE_DIR)
|
29 |
+
saved_model_path = os.path.join(CACHE_DIR, os.listdir(CACHE_DIR)[0])
|
30 |
+
global model
|
31 |
+
model = tf.saved_model.load(saved_model_path, ["serve"])
|
32 |
+
|
33 |
+
|
34 |
+
def dashboard():
|
35 |
+
task_type = st.sidebar.radio("Task Type",
|
36 |
+
[
|
37 |
+
"Translate English to French",
|
38 |
+
"Translate English to German",
|
39 |
+
"Translate English to Romanian",
|
40 |
+
"Grammatical Correctness of Sentence",
|
41 |
+
"Text Summarization",
|
42 |
+
"Document Similarity Score"
|
43 |
+
])
|
44 |
+
if task_type.startswith("Document Similarity"):
|
45 |
+
sentence1 = st.text("The first document/sentence.",
|
46 |
+
"I reside in the commercial capital city of Nigeria, which is Lagos")
|
47 |
+
sentence2 = st.text("The second document/sentence.",
|
48 |
+
"I live in Lagos")
|
49 |
+
sentence = sentence1 + "---" + sentence2
|
50 |
+
elif task_type.startswith("Text Summarization"):
|
51 |
+
sentence = st.text_area("Input sentence.",
|
52 |
+
"I don't care about those doing the comparison, but comparing the Ghanaian Jollof Rice to \
|
53 |
+
Nigerian Jollof Rice is an insult to Nigerians")
|
54 |
+
else:
|
55 |
+
sentence = st.text_area("Input sentence.",
|
56 |
+
"I am Steven and I live in Lagos, Nigeria")
|
57 |
+
st.write("**Output Text**")
|
58 |
+
st.write(predict(task_type, sentence))
|
59 |
+
|
60 |
+
|
61 |
+
def predict(task_type, sentence):
|
62 |
+
"""Function to parse the user inputs, run the parsed text through the
|
63 |
+
model and return output in a readable format.
|
64 |
+
params:
|
65 |
+
task_type sentence representing the type of task to run on T5 model
|
66 |
+
sentence sentence to get inference on
|
67 |
+
returns:
|
68 |
+
text decoded into a human-readable format.
|
69 |
+
"""
|
70 |
+
task_dict = {
|
71 |
+
"Translate English to French": "Translate English to French",
|
72 |
+
"Translate English to German": "Translate English to German",
|
73 |
+
"Translate English to Romanian": "Translate English to Romanian",
|
74 |
+
"Grammatical Correctness of Sentence": "cola sentence",
|
75 |
+
"Text Summarization": "summarize",
|
76 |
+
"Document Similarity Score (separate the 2 sentences with 3 dashes `---`)": "stsb",
|
77 |
+
}
|
78 |
+
question = f"{task_dict[task_type]}: {sentence}" # parsing the user inputs into a format recognized by T5
|
79 |
+
# Document Similarity takes in two sentences so it has to be parsed in a separate manner
|
80 |
+
if task_type.startswith("Document Similarity"):
|
81 |
+
sentences = sentence.split('---')
|
82 |
+
question = f"{task_dict[task_type]} sentence1: {sentences[0]} sentence2: {sentences[1]}"
|
83 |
+
return predict_fn([question])[0].decode('utf-8')
|
84 |
+
|
85 |
+
|
86 |
+
def predict_fn(x):
|
87 |
+
"""Function to get inferences from model on live data points.
|
88 |
+
params:
|
89 |
+
x input text to run get output on
|
90 |
+
returns:
|
91 |
+
a numpy array representing the output
|
92 |
+
"""
|
93 |
+
return model.signatures['serving_default'](tf.constant(x))['outputs'].numpy()
|
94 |
+
|
95 |
+
|
96 |
+
if __name__ == "__main__":
|
97 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
t5
|
2 |
+
huggingface_hub
|
3 |
+
streamlit
|