Spaces:
Running
on
T4
Running
on
T4
import os | |
os.system("pip uninstall -y mmcv-full") | |
os.system("mim install 'mmengine>=0.6.0'") | |
# os.system("pip install mmcv==2.0.1 -f https://download.openmmlab.com/mmcv/dist/cu118/torch2.0/index.html") | |
os.system("mim install 'mmcv-lite==2.0.1'") | |
os.system("mim install 'mmdet>=3.0.0,<4.0.0'") | |
os.system("mim install 'mmyolo'") | |
os.system("pip install -e .") | |
import argparse | |
import os.path as osp | |
from mmengine.config import Config, DictAction | |
from mmengine.runner import Runner | |
from mmengine.dataset import Compose | |
from mmyolo.registry import RUNNERS | |
from tools.demo import demo | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='YOLO-World Demo') | |
parser.add_argument('--config', default='configs/pretrain/yolo_world_xl_t2i_bn_2e-4_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py') | |
parser.add_argument('--checkpoint', default='yolo_world_v2_xl_obj365v1_goldg_cc3mlite_pretrain.pth') | |
parser.add_argument( | |
'--work-dir', | |
help='the directory to save the file containing evaluation metrics') | |
parser.add_argument( | |
'--cfg-options', | |
nargs='+', | |
action=DictAction, | |
help='override some settings in the used config, the key-value pair ' | |
'in xxx=yyy format will be merged into config file. If the value to ' | |
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' | |
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' | |
'Note that the quotation marks are necessary and that no white space ' | |
'is allowed.') | |
args = parser.parse_args() | |
return args | |
if __name__ == '__main__': | |
args = parse_args() | |
# load config | |
cfg = Config.fromfile(args.config) | |
if args.cfg_options is not None: | |
cfg.merge_from_dict(args.cfg_options) | |
if args.work_dir is not None: | |
cfg.work_dir = args.work_dir | |
elif cfg.get('work_dir', None) is None: | |
cfg.work_dir = osp.join('./work_dirs', | |
osp.splitext(osp.basename(args.config))[0]) | |
cfg.load_from = args.checkpoint | |
if 'runner_type' not in cfg: | |
runner = Runner.from_cfg(cfg) | |
else: | |
runner = RUNNERS.build(cfg) | |
runner.call_hook('before_run') | |
runner.load_or_resume() | |
pipeline = cfg.test_dataloader.dataset.pipeline | |
runner.pipeline = Compose(pipeline) | |
runner.model.eval() | |
demo(runner, args, cfg) | |