Spaces:
Runtime error
Runtime error
import networkx as nx | |
from streamlit.components.v1 import html | |
import streamlit as st | |
import helpers | |
st.set_page_config(layout='wide', | |
page_title='STriP: Semantic Similarity of Scientific Papers!', | |
page_icon='π‘' | |
) | |
def main(): | |
st.title('STriP (S3P): Semantic Similarity of Scientific Papers!') | |
st.header('π Load Data') | |
uploaded_file = st.file_uploader("Choose a CSV file", | |
help='Upload a CSV file with the following columns: Title, Abstract') | |
########## | |
# Load data | |
########## | |
if uploaded_file is not None: | |
df = helpers.load_data(uploaded_file) | |
else: | |
df = helpers.load_data('data.csv') | |
data = df.copy() | |
st.write(f'Number of papers: {len(data)}') | |
st.write('First 5 rows of loaded data:') | |
st.write(data[['Title', 'Abstract']].head()) | |
if data is not None: | |
########## | |
# Topic modeling | |
########## | |
st.header('π₯ Topic Modeling') | |
cols = st.columns(3) | |
with cols[0]: | |
min_topic_size = st.slider('Minimum topic size', key='min_topic_size', min_value=2, | |
max_value=int(len(data)/3), step=1, value=3, | |
help='The minimum size of the topic. Increasing this value will lead to a lower number of clusters/topics.') | |
with cols[1]: | |
n_gram_range = st.slider('N-gram range', key='n_gram_range', min_value=1, | |
max_value=4, step=1, value=(1, 3), | |
help='N-gram range for the topic model') | |
with cols[2]: | |
st.text('') | |
st.text('') | |
st.button('Reset Defaults', on_click=helpers.reset_default_topic_sliders, key='reset_topic_sliders', | |
kwargs={'min_topic_size': 3, 'n_gram_range': (1, 3)}) | |
with st.spinner('Topic Modeling'): | |
data, topic_model, topics = helpers.topic_modeling( | |
data, min_topic_size=min_topic_size, n_gram_range=n_gram_range) | |
mapping = { | |
'Topic Keywords': topic_model.visualize_barchart, | |
'Topic Similarities': topic_model.visualize_heatmap, | |
'Topic Hierarchies': topic_model.visualize_hierarchy, | |
'Intertopic Distance': topic_model.visualize_topics | |
} | |
cols = st.columns(3) | |
with cols[0]: | |
topic_model_vis_option = st.selectbox( | |
'Select Topic Modeling Visualization', mapping.keys()) | |
try: | |
fig = mapping[topic_model_vis_option]() | |
fig.update_layout(title='') | |
st.plotly_chart(fig, use_container_width=True) | |
except: | |
st.warning( | |
'No visualization available. Try a lower Minimum topic size!') | |
########## | |
# STriP Network | |
########## | |
st.header('π STriP Network') | |
with st.spinner('Embedding generation'): | |
data = helpers.embeddings(data) | |
with st.spinner('Cosine Similarity Calculation'): | |
cosine_sim_matrix = helpers.cosine_sim(data) | |
min_value, value = helpers.calc_optimal_threshold( | |
cosine_sim_matrix, | |
# 25% is a good value for the number of papers | |
max_connections=helpers.calc_max_connections(len(data), 0.25) | |
) | |
cols = st.columns(3) | |
with cols[0]: | |
threshold = st.slider('Cosine Similarity Threshold', key='threshold', min_value=min_value, | |
max_value=1.0, step=0.01, value=value, | |
help='The minimum cosine similarity between papers to draw a connection. Increasing this value will lead to a lesser connections.') | |
neighbors, num_connections = helpers.calc_neighbors( | |
cosine_sim_matrix, threshold) | |
st.write(f'Number of connections: {num_connections}') | |
with cols[1]: | |
st.text('') | |
st.text('') | |
st.button('Reset Defaults', on_click=helpers.reset_default_threshold_slider, key='reset_threshold', | |
kwargs={'threshold': value}) | |
with st.spinner('Network Generation'): | |
nx_net, pyvis_net = helpers.network_plot( | |
data, topics, neighbors) | |
# Save and read graph as HTML file (on Streamlit Sharing) | |
try: | |
path = '/tmp' | |
pyvis_net.save_graph(f'{path}/pyvis_graph.html') | |
HtmlFile = open(f'{path}/pyvis_graph.html', | |
'r', encoding='utf-8') | |
# Save and read graph as HTML file (locally) | |
except: | |
path = '/html_files' | |
pyvis_net.save_graph(f'{path}/pyvis_graph.html') | |
HtmlFile = open(f'{path}/pyvis_graph.html', | |
'r', encoding='utf-8') | |
# Load HTML file in HTML component for display on Streamlit page | |
html(HtmlFile.read(), height=800) | |
########## | |
# Centrality | |
########## | |
st.header('π Most Important Papers') | |
centrality_mapping = { | |
'Closeness Centrality': nx.closeness_centrality, | |
'Degree Centrality': nx.degree_centrality, | |
'Eigenvector Centrality': nx.eigenvector_centrality, | |
'Betweenness Centrality': nx.betweenness_centrality, | |
} | |
cols = st.columns(3) | |
with cols[0]: | |
centrality_option = st.selectbox( | |
'Select Centrality Measure', centrality_mapping.keys()) | |
# Calculate centrality | |
centrality = centrality_mapping[centrality_option](nx_net) | |
with st.spinner('Network Centrality Calculation'): | |
fig = helpers.network_centrality( | |
data, centrality, centrality_option) | |
st.plotly_chart(fig, use_container_width=True) | |
st.markdown( | |
""" | |
π‘π₯π STriP v1.0 ππ₯π‘ | |
π¨βπ¬ Author: Marie Stephen Leo | |
π Linkedin: [Marie Stephen Leo](https://www.linkedin.com/in/marie-stephen-leo/) | |
π Medium: [@stephen-leo](https://stephen-leo.medium.com/) | |
π» Github: [stephenleo](https://github.com/stephenleo) | |
""" | |
) | |
if __name__ == '__main__': | |
main() | |