Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import pytorch3d | |
from pytorch3d.io import load_objs_as_meshes, load_obj, save_obj, IO | |
from pytorch3d.structures import Meshes | |
from pytorch3d.renderer import ( | |
look_at_view_transform, | |
FoVPerspectiveCameras, | |
FoVOrthographicCameras, | |
AmbientLights, | |
PointLights, | |
DirectionalLights, | |
Materials, | |
RasterizationSettings, | |
MeshRenderer, | |
MeshRasterizer, | |
TexturesUV, | |
) | |
from .geometry import HardGeometryShader | |
from .shader import HardNChannelFlatShader | |
from .voronoi import voronoi_solve | |
import torch.nn.functional as F | |
import open3d as o3d | |
import pdb | |
import kaolin as kal | |
import numpy as np | |
import torch | |
from pytorch3d.renderer.cameras import FoVOrthographicCameras | |
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union | |
from pytorch3d.common.datatypes import Device | |
import math | |
import torch.nn.functional as F | |
from trimesh import Trimesh | |
from pytorch3d.structures import Meshes | |
import os | |
LIST_TYPE = Union[list, np.ndarray, torch.Tensor] | |
_R = torch.eye(3)[None] # (1, 3, 3) | |
_T = torch.zeros(1, 3) # (1, 3) | |
_BatchFloatType = Union[float, Sequence[float], torch.Tensor] | |
class CustomOrthographicCameras(FoVOrthographicCameras): | |
def compute_projection_matrix( | |
self, znear, zfar, max_x, min_x, max_y, min_y, scale_xyz | |
) -> torch.Tensor: | |
""" | |
自定义正交投影矩阵计算,继承并修改深度通道参数 | |
参数维度说明: | |
- znear/zfar: (N,) | |
- max_x/min_x: (N,) | |
- max_y/min_y: (N,) | |
- scale_xyz: (N, 3) | |
""" | |
K = torch.zeros((self._N, 4, 4), dtype=torch.float32, device=self.device) | |
ones = torch.ones((self._N), dtype=torch.float32, device=self.device) | |
# NOTE: OpenGL flips handedness of coordinate system between camera | |
# space and NDC space so z sign is -ve. In PyTorch3D we maintain a | |
# right handed coordinate system throughout. | |
z_sign = +1.0 | |
K[:, 0, 0] = (2.0 / (max_x - min_x)) * scale_xyz[:, 0] | |
K[:, 1, 1] = (2.0 / (max_y - min_y)) * scale_xyz[:, 1] | |
K[:, 0, 3] = -(max_x + min_x) / (max_x - min_x) | |
K[:, 1, 3] = -(max_y + min_y) / (max_y - min_y) | |
K[:, 3, 3] = ones | |
# NOTE: This maps the z coordinate to the range [0, 1] and replaces the | |
# the OpenGL z normalization to [-1, 1] | |
K[:, 2, 2] = -2 * (1.0 / (zfar - znear)) * scale_xyz[:, 2] | |
K[:, 2, 3] = -(znear + zfar) / (zfar - znear) | |
return K | |
def __init__( | |
self, | |
znear: _BatchFloatType = 1.0, | |
zfar: _BatchFloatType = 100.0, | |
max_y: _BatchFloatType = 1.0, | |
min_y: _BatchFloatType = -1.0, | |
max_x: _BatchFloatType = 1.0, | |
min_x: _BatchFloatType = -1.0, | |
scale_xyz=((1.0, 1.0, 1.0),), # (N, 3) | |
R: torch.Tensor = _R, | |
T: torch.Tensor = _T, | |
K: Optional[torch.Tensor] = None, | |
device: Device = "cpu", | |
): | |
# 继承父类初始化逻辑 | |
super().__init__( | |
znear=znear, | |
zfar=zfar, | |
max_y=max_y, | |
min_y=min_y, | |
max_x=max_x, | |
min_x=min_x, | |
scale_xyz=scale_xyz, | |
R=R, | |
T=T, | |
K=K, | |
device=device, | |
) | |
def erode_torch_batch(binary_img_batch, kernel_size): | |
pad = (kernel_size - 1) // 2 | |
bin_img = F.pad( | |
binary_img_batch.unsqueeze(1), pad=[pad, pad, pad, pad], mode="reflect" | |
) | |
out = -F.max_pool2d(-bin_img, kernel_size=kernel_size, stride=1, padding=0) | |
out = out.squeeze(1) | |
return out | |
def dilate_torch_batch(binary_img_batch, kernel_size): | |
pad = (kernel_size - 1) // 2 | |
bin_img = F.pad(binary_img_batch, pad=[pad, pad, pad, pad], mode="reflect") | |
out = F.max_pool2d(bin_img, kernel_size=kernel_size, stride=1, padding=0) | |
out = out.squeeze() | |
return out | |
# Pytorch3D based renderering functions, managed in a class | |
# Render size is recommended to be the same as your latent view size | |
# DO NOT USE "bilinear" sampling when you are handling latents. | |
# Stable Diffusion has 4 latent channels so use channels=4 | |
class UVProjection: | |
def __init__( | |
self, | |
texture_size=96, | |
render_size=64, | |
sampling_mode="nearest", | |
channels=3, | |
device=None, | |
): | |
self.channels = channels | |
self.device = device or torch.device("cpu") | |
self.lights = AmbientLights( | |
ambient_color=((1.0,) * channels,), device=self.device | |
) | |
self.target_size = (texture_size, texture_size) | |
self.render_size = render_size | |
self.sampling_mode = sampling_mode | |
# Load obj mesh, rescale the mesh to fit into the bounding box | |
def load_mesh(self, mesh, scale_factor=2.0, auto_center=True, autouv=False): | |
if isinstance(mesh, Trimesh): | |
vertices = torch.tensor(mesh.vertices, dtype=torch.float32).to(self.device) | |
faces = torch.tensor(mesh.faces, dtype=torch.int64).to(self.device) | |
mesh = Meshes(verts=[vertices], faces=[faces]) | |
verts = mesh.verts_packed() | |
mesh = mesh.update_padded(verts[None, :, :]) | |
elif isinstance(mesh, str) and os.path.isfile(mesh): | |
mesh = load_objs_as_meshes([mesh_path], device=self.device) | |
if auto_center: | |
verts = mesh.verts_packed() | |
max_bb = (verts - 0).max(0)[0] | |
min_bb = (verts - 0).min(0)[0] | |
scale = (max_bb - min_bb).max() / 2 | |
center = (max_bb + min_bb) / 2 | |
mesh.offset_verts_(-center) | |
mesh.scale_verts_((scale_factor / float(scale))) | |
else: | |
mesh.scale_verts_((scale_factor)) | |
if autouv or (mesh.textures is None): | |
mesh = self.uv_unwrap(mesh) | |
self.mesh = mesh | |
def load_glb_mesh( | |
self, mesh_path, trimesh, scale_factor=1.0, auto_center=True, autouv=False | |
): | |
from pytorch3d.io.experimental_gltf_io import MeshGlbFormat | |
io = IO() | |
io.register_meshes_format(MeshGlbFormat()) | |
with open(mesh_path, "rb") as f: | |
mesh = io.load_mesh(f, include_textures=True, device=self.device) | |
if auto_center: | |
verts = mesh.verts_packed() | |
max_bb = (verts - 0).max(0)[0] | |
min_bb = (verts - 0).min(0)[0] | |
scale = (max_bb - min_bb).max() / 2 | |
center = (max_bb + min_bb) / 2 | |
mesh.offset_verts_(-center) | |
mesh.scale_verts_((scale_factor / float(scale))) | |
verts = mesh.verts_packed() | |
# T = torch.tensor([[1, 0, 0], [0, 0, -1], [0, 1, 0]], device=verts.device, dtype=verts.dtype) | |
# T = torch.tensor([[0, 0, 1], [0, 1, 0], [-1, 0, 0]], device=verts.device, dtype=verts.dtype) | |
# verts = verts @ T | |
mesh = mesh.update_padded(verts[None, :, :]) | |
else: | |
mesh.scale_verts_((scale_factor)) | |
if autouv or (mesh.textures is None): | |
mesh = self.uv_unwrap(mesh) | |
self.mesh = mesh | |
# Save obj mesh | |
def save_mesh(self, mesh_path, texture): | |
save_obj( | |
mesh_path, | |
self.mesh.verts_list()[0], | |
self.mesh.faces_list()[0], | |
verts_uvs=self.mesh.textures.verts_uvs_list()[0], | |
faces_uvs=self.mesh.textures.faces_uvs_list()[0], | |
texture_map=texture, | |
) | |
# Code referred to TEXTure code (https://github.com/TEXTurePaper/TEXTurePaper.git) | |
def uv_unwrap(self, mesh): | |
verts_list = mesh.verts_list()[0] | |
faces_list = mesh.faces_list()[0] | |
import xatlas | |
import numpy as np | |
v_np = verts_list.cpu().numpy() | |
f_np = faces_list.int().cpu().numpy() | |
atlas = xatlas.Atlas() | |
atlas.add_mesh(v_np, f_np) | |
chart_options = xatlas.ChartOptions() | |
chart_options.max_iterations = 4 | |
atlas.generate(chart_options=chart_options) | |
vmapping, ft_np, vt_np = atlas[0] # [N], [M, 3], [N, 2] | |
vt = ( | |
torch.from_numpy(vt_np.astype(np.float32)) | |
.type(verts_list.dtype) | |
.to(mesh.device) | |
) | |
ft = ( | |
torch.from_numpy(ft_np.astype(np.int64)) | |
.type(faces_list.dtype) | |
.to(mesh.device) | |
) | |
new_map = torch.zeros(self.target_size + (self.channels,), device=mesh.device) | |
new_tex = TexturesUV([new_map], [ft], [vt], sampling_mode=self.sampling_mode) | |
mesh.textures = new_tex | |
return mesh | |
""" | |
A functions that disconnect faces in the mesh according to | |
its UV seams. The number of vertices are made equal to the | |
number of unique vertices its UV layout, while the faces list | |
is intact. | |
""" | |
def disconnect_faces(self): | |
mesh = self.mesh | |
verts_list = mesh.verts_list() | |
faces_list = mesh.faces_list() | |
verts_uvs_list = mesh.textures.verts_uvs_list() | |
faces_uvs_list = mesh.textures.faces_uvs_list() | |
packed_list = [v[f] for v, f in zip(verts_list, faces_list)] | |
verts_disconnect_list = [ | |
torch.zeros( | |
(verts_uvs_list[i].shape[0], 3), | |
dtype=verts_list[0].dtype, | |
device=verts_list[0].device, | |
) | |
for i in range(len(verts_list)) | |
] | |
for i in range(len(verts_list)): | |
verts_disconnect_list[i][faces_uvs_list] = packed_list[i] | |
assert not mesh.has_verts_normals(), "Not implemented for vertex normals" | |
self.mesh_d = Meshes(verts_disconnect_list, faces_uvs_list, mesh.textures) | |
return self.mesh_d | |
""" | |
A function that construct a temp mesh for back-projection. | |
Take a disconnected mesh and a rasterizer, the function calculates | |
the projected faces as the UV, as use its original UV with pseudo | |
z value as world space geometry. | |
""" | |
def construct_uv_mesh(self): | |
mesh = self.mesh_d | |
verts_list = mesh.verts_list() | |
verts_uvs_list = mesh.textures.verts_uvs_list() | |
# faces_list = [torch.flip(faces, [-1]) for faces in mesh.faces_list()] | |
new_verts_list = [] | |
for i, (verts, verts_uv) in enumerate(zip(verts_list, verts_uvs_list)): | |
verts = verts.clone() | |
verts_uv = verts_uv.clone() | |
verts[..., 0:2] = verts_uv[..., :] | |
verts = (verts - 0.5) * 2 | |
verts[..., 2] *= 1 | |
new_verts_list.append(verts) | |
textures_uv = mesh.textures.clone() | |
self.mesh_uv = Meshes(new_verts_list, mesh.faces_list(), textures_uv) | |
return self.mesh_uv | |
# Set texture for the current mesh. | |
def set_texture_map(self, texture): | |
new_map = texture.permute(1, 2, 0) | |
new_map = new_map.to(self.device) | |
new_tex = TexturesUV( | |
[new_map], | |
self.mesh.textures.faces_uvs_padded(), | |
self.mesh.textures.verts_uvs_padded(), | |
sampling_mode=self.sampling_mode, | |
) | |
self.mesh.textures = new_tex | |
# Set the initial normal noise texture | |
# No generator here for replication of the experiment result. Add one as you wish | |
def set_noise_texture(self, channels=None): | |
if not channels: | |
channels = self.channels | |
noise_texture = torch.normal( | |
0, 1, (channels,) + self.target_size, device=self.device | |
) | |
self.set_texture_map(noise_texture) | |
return noise_texture | |
# Set the cameras given the camera poses and centers | |
def set_cameras(self, camera_poses, centers=None, camera_distance=2.7, scale=None): | |
elev = torch.FloatTensor([pose[0] for pose in camera_poses]) | |
azim = torch.FloatTensor([pose[1] for pose in camera_poses]) | |
print("camera_distance:{}".format(camera_distance)) | |
R, T = look_at_view_transform( | |
dist=camera_distance, elev=elev, azim=azim, at=centers or ((0, 0, 0),) | |
) | |
# flip_mat = torch.from_numpy(np.diag([-1.0, 1.0, -1.0]) ).type(torch.FloatTensor).to(R.device) | |
# R = R@flip_mat | |
# R = R.permute(0, 2, 1) | |
# T = T*torch.from_numpy(np.array([-1.0, 1.0, -1.0])).type(torch.FloatTensor).to(R.device) | |
# print("v R size:{}, v T size:{}".format(R.size(), T.size())) | |
# c2w = self.get_c2w(elev, [camera_distance]*len(elev), azim) | |
# w2c = torch.linalg.inv(c2w) | |
# R, T= w2c[:, :3, :3], w2c[:, :3, 3] | |
print("R size:{}, T size:{}".format(R.size(), T.size())) | |
# self.cameras = CustomOrthographicCameras(device=self.device, R=R, T=T, scale_xyz=scale or ((1,1,1),), znear=0.1, min_x=-0.55, max_x=0.55, min_y=-0.55, max_y=0.55) | |
self.cameras = FoVOrthographicCameras( | |
device=self.device, R=R, T=T, scale_xyz=scale or ((1, 1, 1),) | |
) | |
# Set all necessary internal data for rendering and texture baking | |
# Can be used to refresh after changing camera positions | |
def set_cameras_and_render_settings( | |
self, | |
camera_poses, | |
centers=None, | |
camera_distance=2.7, | |
render_size=None, | |
scale=None, | |
): | |
self.set_cameras(camera_poses, centers, camera_distance, scale=scale) | |
if render_size is None: | |
render_size = self.render_size | |
if not hasattr(self, "renderer"): | |
self.setup_renderer(size=render_size) | |
if not hasattr(self, "mesh_d"): | |
self.disconnect_faces() | |
if not hasattr(self, "mesh_uv"): | |
self.construct_uv_mesh() | |
self.calculate_tex_gradient() | |
self.calculate_visible_triangle_mask() | |
_, _, _, cos_maps, _, _ = self.render_geometry() | |
self.calculate_cos_angle_weights(cos_maps) | |
# Setup renderers for rendering | |
# max faces per bin set to 30000 to avoid overflow in many test cases. | |
# You can use default value to let pytorch3d handle that for you. | |
def setup_renderer( | |
self, | |
size=64, | |
blur=0.0, | |
face_per_pix=1, | |
perspective_correct=False, | |
channels=None, | |
): | |
if not channels: | |
channels = self.channels | |
self.raster_settings = RasterizationSettings( | |
image_size=size, | |
blur_radius=blur, | |
faces_per_pixel=face_per_pix, | |
perspective_correct=perspective_correct, | |
cull_backfaces=True, | |
max_faces_per_bin=30000, | |
) | |
self.renderer = MeshRenderer( | |
rasterizer=MeshRasterizer( | |
cameras=self.cameras, | |
raster_settings=self.raster_settings, | |
), | |
shader=HardNChannelFlatShader( | |
device=self.device, | |
cameras=self.cameras, | |
lights=self.lights, | |
channels=channels, | |
# materials=materials | |
), | |
) | |
# Bake screen-space cosine weights to UV space | |
# May be able to reimplement using the generic "bake_texture" function, but it works so leave it here for now | |
def calculate_cos_angle_weights(self, cos_angles, fill=True, channels=None): | |
if not channels: | |
channels = self.channels | |
cos_maps = [] | |
tmp_mesh = self.mesh.clone() | |
for i in range(len(self.cameras)): | |
zero_map = torch.zeros( | |
self.target_size + (channels,), device=self.device, requires_grad=True | |
) | |
optimizer = torch.optim.SGD([zero_map], lr=1, momentum=0) | |
optimizer.zero_grad() | |
zero_tex = TexturesUV( | |
[zero_map], | |
self.mesh.textures.faces_uvs_padded(), | |
self.mesh.textures.verts_uvs_padded(), | |
sampling_mode=self.sampling_mode, | |
) | |
tmp_mesh.textures = zero_tex | |
images_predicted = self.renderer( | |
tmp_mesh, cameras=self.cameras[i], lights=self.lights | |
) | |
loss = torch.sum((cos_angles[i, :, :, 0:1] ** 1 - images_predicted) ** 2) | |
loss.backward() | |
optimizer.step() | |
if fill: | |
zero_map = zero_map.detach() / (self.gradient_maps[i] + 1e-8) | |
zero_map = voronoi_solve( | |
zero_map, self.gradient_maps[i][..., 0], self.device | |
) | |
else: | |
zero_map = zero_map.detach() / (self.gradient_maps[i] + 1e-8) | |
cos_maps.append(zero_map) | |
self.cos_maps = cos_maps | |
# Get geometric info from fragment shader | |
# Can be used for generating conditioning image and cosine weights | |
# Returns some information you may not need, remember to release them for memory saving | |
def render_geometry(self, image_size=None): | |
if image_size: | |
size = self.renderer.rasterizer.raster_settings.image_size | |
self.renderer.rasterizer.raster_settings.image_size = image_size | |
shader = self.renderer.shader | |
self.renderer.shader = HardGeometryShader( | |
device=self.device, cameras=self.cameras[0], lights=self.lights | |
) | |
tmp_mesh = self.mesh.clone() | |
verts, normals, depths, cos_angles, texels, fragments = self.renderer( | |
tmp_mesh.extend(len(self.cameras)), cameras=self.cameras, lights=self.lights | |
) | |
self.renderer.shader = shader | |
if image_size: | |
self.renderer.rasterizer.raster_settings.image_size = size | |
return verts, normals, depths, cos_angles, texels, fragments | |
# Project world normal to view space and normalize | |
def decode_view_normal(self, normals): | |
w2v_mat = self.cameras.get_full_projection_transform() | |
normals_view = torch.clone(normals)[:, :, :, 0:3] | |
normals_view = normals_view.reshape(normals_view.shape[0], -1, 3) | |
normals_view = w2v_mat.transform_normals(normals_view) | |
normals_view = normals_view.reshape(normals.shape[0:3] + (3,)) | |
normals_view[:, :, :, 2] *= -1 | |
normals = (normals_view[..., 0:3] + 1) * normals[ | |
..., 3: | |
] / 2 + torch.FloatTensor(((((0.5, 0.5, 1))))).to(self.device) * ( | |
1 - normals[..., 3:] | |
) | |
# normals = torch.cat([normal for normal in normals], dim=1) | |
normals = normals.clamp(0, 1) | |
return normals | |
# Normalize absolute depth to inverse depth | |
def decode_normalized_depth(self, depths, batched_norm=False): | |
view_z, mask = depths.unbind(-1) | |
view_z = view_z * mask + 100 * (1 - mask) | |
inv_z = 1 / view_z | |
inv_z_min = inv_z * mask + 100 * (1 - mask) | |
if not batched_norm: | |
max_ = torch.max(inv_z, 1, keepdim=True) | |
max_ = torch.max(max_[0], 2, keepdim=True)[0] | |
min_ = torch.min(inv_z_min, 1, keepdim=True) | |
min_ = torch.min(min_[0], 2, keepdim=True)[0] | |
else: | |
max_ = torch.max(inv_z) | |
min_ = torch.min(inv_z_min) | |
inv_z = (inv_z - min_) / (max_ - min_) | |
inv_z = inv_z.clamp(0, 1) | |
inv_z = inv_z[..., None].repeat(1, 1, 1, 3) | |
return inv_z | |
# Multiple screen pixels could pass gradient to a same texel | |
# We can precalculate this gradient strength and use it to normalize gradients when we bake textures | |
def calculate_tex_gradient(self, channels=None): | |
if not channels: | |
channels = self.channels | |
tmp_mesh = self.mesh.clone() | |
gradient_maps = [] | |
for i in range(len(self.cameras)): | |
zero_map = torch.zeros( | |
self.target_size + (channels,), device=self.device, requires_grad=True | |
) | |
optimizer = torch.optim.SGD([zero_map], lr=1, momentum=0) | |
optimizer.zero_grad() | |
zero_tex = TexturesUV( | |
[zero_map], | |
self.mesh.textures.faces_uvs_padded(), | |
self.mesh.textures.verts_uvs_padded(), | |
sampling_mode=self.sampling_mode, | |
) | |
tmp_mesh.textures = zero_tex | |
images_predicted = self.renderer( | |
tmp_mesh, cameras=self.cameras[i], lights=self.lights | |
) | |
loss = torch.sum((1 - images_predicted) ** 2) | |
loss.backward() | |
optimizer.step() | |
gradient_maps.append(zero_map.detach()) | |
self.gradient_maps = gradient_maps | |
# Get the UV space masks of triangles visible in each view | |
# First get face ids from each view, then filter pixels on UV space to generate masks | |
def get_c2w( | |
self, | |
elevation_deg: LIST_TYPE, | |
distance: LIST_TYPE, | |
azimuth_deg: Optional[LIST_TYPE], | |
num_views: Optional[int] = 1, | |
device: Optional[str] = None, | |
) -> torch.FloatTensor: | |
if azimuth_deg is None: | |
assert ( | |
num_views is not None | |
), "num_views must be provided if azimuth_deg is None." | |
azimuth_deg = torch.linspace( | |
0, 360, num_views + 1, dtype=torch.float32, device=device | |
)[:-1] | |
else: | |
num_views = len(azimuth_deg) | |
def list_to_pt( | |
x: LIST_TYPE, | |
dtype: Optional[torch.dtype] = None, | |
device: Optional[str] = None, | |
) -> torch.Tensor: | |
if isinstance(x, list) or isinstance(x, np.ndarray): | |
return torch.tensor(x, dtype=dtype, device=device) | |
return x.to(dtype=dtype) | |
azimuth_deg = list_to_pt(azimuth_deg, dtype=torch.float32, device=device) | |
elevation_deg = list_to_pt(elevation_deg, dtype=torch.float32, device=device) | |
camera_distances = list_to_pt(distance, dtype=torch.float32, device=device) | |
elevation = elevation_deg * math.pi / 180 | |
azimuth = azimuth_deg * math.pi / 180 | |
camera_positions = torch.stack( | |
[ | |
camera_distances * torch.cos(elevation) * torch.cos(azimuth), | |
camera_distances * torch.cos(elevation) * torch.sin(azimuth), | |
camera_distances * torch.sin(elevation), | |
], | |
dim=-1, | |
) | |
center = torch.zeros_like(camera_positions) | |
up = torch.tensor([0, 0, 1], dtype=torch.float32, device=device)[ | |
None, : | |
].repeat(num_views, 1) | |
lookat = F.normalize(center - camera_positions, dim=-1) | |
right = F.normalize(torch.cross(lookat, up, dim=-1), dim=-1) | |
up = F.normalize(torch.cross(right, lookat, dim=-1), dim=-1) | |
c2w3x4 = torch.cat( | |
[torch.stack([right, up, -lookat], dim=-1), camera_positions[:, :, None]], | |
dim=-1, | |
) | |
c2w = torch.cat([c2w3x4, torch.zeros_like(c2w3x4[:, :1])], dim=1) | |
c2w[:, 3, 3] = 1.0 | |
return c2w | |
def calculate_visible_triangle_mask(self, channels=None, image_size=(512, 512)): | |
if not channels: | |
channels = self.channels | |
pix2face_list = [] | |
for i in range(len(self.cameras)): | |
self.renderer.rasterizer.raster_settings.image_size = image_size | |
pix2face = self.renderer.rasterizer( | |
self.mesh_d, cameras=self.cameras[i] | |
).pix_to_face | |
self.renderer.rasterizer.raster_settings.image_size = self.render_size | |
pix2face_list.append(pix2face) | |
if not hasattr(self, "mesh_uv"): | |
self.construct_uv_mesh() | |
raster_settings = RasterizationSettings( | |
image_size=self.target_size, | |
blur_radius=0, | |
faces_per_pixel=1, | |
perspective_correct=False, | |
cull_backfaces=False, | |
max_faces_per_bin=30000, | |
) | |
R, T = look_at_view_transform(dist=2, elev=0, azim=0) | |
# flip_mat = torch.from_numpy(np.diag([-1.0, 1.0, -1.0]) ).type(torch.FloatTensor).to(R.device) | |
# R = R@flip_mat | |
# T = T*torch.tensor(np.array([-1.0, 1.0, -1.0])).type(torch.FloatTensor).to(R.device) | |
# c2w = self.get_c2w([0], [1.8], [0]) | |
# w2c = torch.linalg.inv(c2w)[:, :3,:] | |
# R, T= w2c[:, :3,:3], w2c[:, :3, 3] | |
# print("R size:{}, T size:{}".format(R.size(), T.size())) | |
cameras = FoVOrthographicCameras(device=self.device, R=R, T=T) | |
# cameras = CustomOrthographicCameras(device=self.device, R=R, T=T) | |
# cameras = CustomOrthographicCameras(device=self.device, R=R, T=T, znear=0.1, min_x=-0.55, max_x=0.55, min_y=-0.55, max_y=0.55) | |
rasterizer = MeshRasterizer(cameras=cameras, raster_settings=raster_settings) | |
uv_pix2face = rasterizer(self.mesh_uv).pix_to_face | |
visible_triangles = [] | |
for i in range(len(pix2face_list)): | |
valid_faceid = torch.unique(pix2face_list[i]) | |
valid_faceid = valid_faceid[1:] if valid_faceid[0] == -1 else valid_faceid | |
mask = torch.isin(uv_pix2face[0], valid_faceid, assume_unique=False) | |
# uv_pix2face[0][~mask] = -1 | |
triangle_mask = torch.ones(self.target_size + (1,), device=self.device) | |
triangle_mask[~mask] = 0 | |
triangle_mask[:, 1:][triangle_mask[:, :-1] > 0] = 1 | |
triangle_mask[:, :-1][triangle_mask[:, 1:] > 0] = 1 | |
triangle_mask[1:, :][triangle_mask[:-1, :] > 0] = 1 | |
triangle_mask[:-1, :][triangle_mask[1:, :] > 0] = 1 | |
visible_triangles.append(triangle_mask) | |
self.visible_triangles = visible_triangles | |
# Render the current mesh and texture from current cameras | |
def render_textured_views(self): | |
meshes = self.mesh.extend(len(self.cameras)) | |
images_predicted = self.renderer( | |
meshes, cameras=self.cameras, lights=self.lights | |
) | |
return [image.permute(2, 0, 1) for image in images_predicted] | |
def get_point_validation_by_o3d( | |
self, points, eye_position, hidden_point_removal_radius=200 | |
): | |
point_visibility = torch.zeros((points.shape[0]), device=points.device).bool() | |
pcd = o3d.geometry.PointCloud( | |
points=o3d.utility.Vector3dVector(points.cpu().numpy()) | |
) | |
camera_pose = ( | |
eye_position.get_camera_center().squeeze().cpu().numpy().astype(np.float64) | |
) | |
# o3d_camera = [0, 0, diameter] | |
diameter = np.linalg.norm( | |
np.asarray(pcd.get_max_bound()) - np.asarray(pcd.get_min_bound()) | |
) | |
radius = diameter * 200 # The radius of the sperical projection | |
_, pt_map = pcd.hidden_point_removal(camera_pose, radius) | |
visible_point_ids = np.array(pt_map) | |
point_visibility[visible_point_ids] = True | |
return point_visibility | |
def hidden_judge(self, camera, texture_dim): | |
mesh = self.mesh | |
verts = mesh.verts_packed() | |
faces = mesh.faces_packed() | |
verts_uv = mesh.textures.verts_uvs_padded()[0] # 获取打包后的 UV 坐标 (V, 2) | |
faces_uv = mesh.textures.faces_uvs_padded()[0] | |
uv_face_attr = torch.index_select( | |
verts_uv, 0, faces_uv.view(-1) | |
) # 选择对应顶点的 UV 坐标 | |
uv_face_attr = uv_face_attr.view( | |
faces.shape[0], faces_uv.shape[1], 2 | |
).unsqueeze(0) | |
x, y, z = verts[:, 0], verts[:, 1], verts[:, 2] | |
mesh_out_of_range = False | |
if ( | |
x.min() < -1 | |
or x.max() > 1 | |
or y.min() < -1 | |
or y.max() > 1 | |
or z.min() < -1 | |
or z.max() > 1 | |
): | |
mesh_out_of_range = True | |
face_vertices_world = kal.ops.mesh.index_vertices_by_faces( | |
verts.unsqueeze(0), faces | |
) | |
face_vertices_z = torch.zeros_like( | |
face_vertices_world[:, :, :, -1], device=verts.device | |
) | |
uv_position, face_idx = kal.render.mesh.rasterize( | |
texture_dim, | |
texture_dim, | |
face_vertices_z, | |
uv_face_attr * 2 - 1, | |
face_features=face_vertices_world, | |
) | |
uv_position = torch.clamp(uv_position, -1, 1) | |
uv_position[face_idx == -1] = 0 | |
points = uv_position.reshape(-1, 3) | |
mask = points[:, 0] != 0 | |
valid_points = points[mask] | |
# np.save("tmp/pcd.npy", valid_points.cpu().numpy()) | |
# print(camera.get_camera_center()) | |
points_visibility = self.get_point_validation_by_o3d( | |
valid_points, camera | |
).float() | |
visibility_map = torch.zeros((texture_dim * texture_dim,)).to(self.device) | |
visibility_map[mask] = points_visibility | |
visibility_map = visibility_map.reshape((texture_dim, texture_dim)) | |
return visibility_map | |
def bake_texture( | |
self, | |
views=None, | |
main_views=[], | |
cos_weighted=True, | |
channels=None, | |
exp=None, | |
noisy=False, | |
generator=None, | |
smooth_colorize=False, | |
): | |
if not exp: | |
exp = 1 | |
if not channels: | |
channels = self.channels | |
views = [view.permute(1, 2, 0) for view in views] | |
tmp_mesh = self.mesh | |
bake_maps = [ | |
torch.zeros( | |
self.target_size + (views[0].shape[2],), | |
device=self.device, | |
requires_grad=True, | |
) | |
for view in views | |
] | |
optimizer = torch.optim.SGD(bake_maps, lr=1, momentum=0) | |
optimizer.zero_grad() | |
loss = 0 | |
for i in range(len(self.cameras)): | |
bake_tex = TexturesUV( | |
[bake_maps[i]], | |
tmp_mesh.textures.faces_uvs_padded(), | |
tmp_mesh.textures.verts_uvs_padded(), | |
sampling_mode=self.sampling_mode, | |
) | |
tmp_mesh.textures = bake_tex | |
images_predicted = self.renderer( | |
tmp_mesh, | |
cameras=self.cameras[i], | |
lights=self.lights, | |
device=self.device, | |
) | |
predicted_rgb = images_predicted[..., :-1] | |
loss += (((predicted_rgb[...] - views[i])) ** 2).sum() | |
loss.backward(retain_graph=False) | |
optimizer.step() | |
total_weights = 0 | |
baked = 0 | |
for i in range(len(bake_maps)): | |
normalized_baked_map = bake_maps[i].detach() / ( | |
self.gradient_maps[i] + 1e-8 | |
) | |
bake_map = voronoi_solve( | |
normalized_baked_map, self.gradient_maps[i][..., 0], self.device | |
) | |
# bake_map = voronoi_solve(normalized_baked_map, self.visible_triangles[i].squeeze()) | |
weight = self.visible_triangles[i] * (self.cos_maps[i]) ** exp | |
if smooth_colorize: | |
visibility_map = self.hidden_judge( | |
self.cameras[i], self.target_size[0] | |
).unsqueeze(-1) | |
weight *= visibility_map | |
if noisy: | |
noise = ( | |
torch.rand(weight.shape[:-1] + (1,), generator=generator) | |
.type(weight.dtype) | |
.to(weight.device) | |
) | |
weight *= noise | |
total_weights += weight | |
baked += bake_map * weight | |
baked /= total_weights + 1e-8 | |
whole_visible_mask = None | |
if not smooth_colorize: | |
baked = voronoi_solve(baked, total_weights[..., 0], self.device) | |
tmp_mesh.textures = TexturesUV( | |
[baked], | |
tmp_mesh.textures.faces_uvs_padded(), | |
tmp_mesh.textures.verts_uvs_padded(), | |
sampling_mode=self.sampling_mode, | |
) | |
else: # smooth colorize | |
baked = voronoi_solve(baked, total_weights[..., 0], self.device) | |
whole_visible_mask = self.visible_triangles[0].to(torch.int32) | |
for tensor in self.visible_triangles[1:]: | |
whole_visible_mask = torch.bitwise_or( | |
whole_visible_mask, tensor.to(torch.int32) | |
) | |
baked *= whole_visible_mask | |
tmp_mesh.textures = TexturesUV( | |
[baked], | |
tmp_mesh.textures.faces_uvs_padded(), | |
tmp_mesh.textures.verts_uvs_padded(), | |
sampling_mode=self.sampling_mode, | |
) | |
extended_mesh = tmp_mesh.extend(len(self.cameras)) | |
images_predicted = self.renderer( | |
extended_mesh, cameras=self.cameras, lights=self.lights | |
) | |
learned_views = [image.permute(2, 0, 1) for image in images_predicted] | |
return learned_views, baked.permute(2, 0, 1), total_weights.permute(2, 0, 1) | |
# Move the internel data to a specific device | |
def to(self, device): | |
for mesh_name in ["mesh", "mesh_d", "mesh_uv"]: | |
if hasattr(self, mesh_name): | |
mesh = getattr(self, mesh_name) | |
setattr(self, mesh_name, mesh.to(device)) | |
for list_name in ["visible_triangles", "visibility_maps", "cos_maps"]: | |
if hasattr(self, list_name): | |
map_list = getattr(self, list_name) | |
for i in range(len(map_list)): | |
map_list[i] = map_list[i].to(device) | |