Step1X-3D / step1x3d_texture /pipelines /step1x_3d_texture_synthesis_pipeline.py
ReubenSun's picture
fix:gradio
0605002
import argparse
import numpy as np
import torch
from diffusers import AutoencoderKL, DDPMScheduler, LCMScheduler, UNet2DConditionModel
from PIL import Image
from torchvision import transforms
from tqdm import tqdm
from transformers import AutoModelForImageSegmentation
from step1x3d_texture.models.attention_processor import (
DecoupledMVRowColSelfAttnProcessor2_0,
)
from step1x3d_texture.pipelines.ig2mv_sdxl_pipeline import IG2MVSDXLPipeline
from step1x3d_texture.schedulers.scheduling_shift_snr import ShiftSNRScheduler
from step1x3d_texture.utils import (
get_orthogonal_camera,
make_image_grid,
tensor_to_image,
)
from step1x3d_texture.utils.render import NVDiffRastContextWrapper, load_mesh, render
from step1x3d_texture.differentiable_renderer.mesh_render import MeshRender
import trimesh
import xatlas
import scipy.sparse
from scipy.sparse.linalg import spsolve
from step1x3d_geometry.models.pipelines.pipeline_utils import smart_load_model
class Step1X3DTextureConfig:
def __init__(self):
# prepare pipeline params
self.base_model = "stabilityai/stable-diffusion-xl-base-1.0"
self.vae_model = "madebyollin/sdxl-vae-fp16-fix"
self.unet_model = None
self.lora_model = None
self.adapter_path = "stepfun-ai/Step1X-3D"
self.scheduler = None
self.num_views = 6
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.dtype = torch.float16
self.lora_scale = None
# run pipeline params
self.text = "high quality"
self.num_inference_steps = 50
self.guidance_scale = 3.0
self.seed = -1
self.reference_conditioning_scale = 1.0
self.negative_prompt = "watermark, ugly, deformed, noisy, blurry, low contrast"
self.azimuth_deg = [0, 45, 90, 180, 270, 315]
# texture baker params
self.selected_camera_azims = [0, 90, 180, 270, 180, 180]
self.selected_camera_elevs = [0, 0, 0, 0, 90, -90]
self.selected_view_weights = [1, 0.1, 0.5, 0.1, 0.05, 0.05]
self.camera_distance = 1.8
self.render_size = 2048
self.texture_size = 2048
self.bake_exp = 4
self.merge_method = "fast"
class Step1X3DTexturePipeline:
def __init__(self, config):
self.config = config
self.mesh_render = MeshRender(
default_resolution=self.config.render_size,
texture_size=self.config.texture_size,
camera_distance=self.config.camera_distance,
)
self.ig2mv_pipe = self.prepare_ig2mv_pipeline(
base_model=self.config.base_model,
vae_model=self.config.vae_model,
unet_model=self.config.unet_model,
lora_model=self.config.lora_model,
adapter_path=self.config.adapter_path,
scheduler=self.config.scheduler,
num_views=self.config.num_views,
device=self.config.device,
dtype=self.config.dtype,
)
@classmethod
def from_pretrained(cls, model_path, subfolder):
config = Step1X3DTextureConfig()
local_model_path = smart_load_model(model_path, subfolder=subfolder)
print(f'Local model path: {local_model_path}')
config.adapter_path = local_model_path
return cls(config)
def mesh_uv_wrap(self, mesh):
if isinstance(mesh, trimesh.Scene):
mesh = mesh.to_geometry()
vmapping, indices, uvs = xatlas.parametrize(mesh.vertices, mesh.faces)
mesh.vertices = mesh.vertices[vmapping]
mesh.faces = indices
mesh.visual.uv = uvs
return mesh
def prepare_ig2mv_pipeline(
self,
base_model,
vae_model,
unet_model,
lora_model,
adapter_path,
scheduler,
num_views,
device,
dtype,
):
# Load vae and unet if provided
pipe_kwargs = {}
if vae_model is not None:
pipe_kwargs["vae"] = AutoencoderKL.from_pretrained(vae_model)
if unet_model is not None:
pipe_kwargs["unet"] = UNet2DConditionModel.from_pretrained(unet_model)
print('VAE Loaded!')
# Prepare pipeline
pipe = IG2MVSDXLPipeline.from_pretrained(base_model, **pipe_kwargs)
print('Base model Loaded!')
# Load scheduler if provided
scheduler_class = None
if scheduler == "ddpm":
scheduler_class = DDPMScheduler
elif scheduler == "lcm":
scheduler_class = LCMScheduler
pipe.scheduler = ShiftSNRScheduler.from_scheduler(
pipe.scheduler,
shift_mode="interpolated",
shift_scale=8.0,
scheduler_class=scheduler_class,
)
print('Scheduler Loaded!')
pipe.init_custom_adapter(
num_views=num_views,
self_attn_processor=DecoupledMVRowColSelfAttnProcessor2_0,
)
print(f'Load adapter from {adapter_path}/step1x-3d-ig2v.safetensors')
pipe.load_custom_adapter(adapter_path, "step1x-3d-ig2v.safetensors")
print(f'Load adapter successed!')
pipe.to(device=device, dtype=dtype)
pipe.cond_encoder.to(device=device, dtype=dtype)
# load lora if provided
if lora_model is not None:
model_, name_ = lora_model.rsplit("/", 1)
pipe.load_lora_weights(model_, weight_name=name_)
return pipe
def remove_bg(self, image, net, transform, device):
image_size = image.size
input_images = transform(image).unsqueeze(0).to(device)
with torch.no_grad():
preds = net(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
image.putalpha(mask)
return image
def preprocess_image(self, image, height, width):
image = np.array(image)
alpha = image[..., 3] > 0
H, W = alpha.shape
# get the bounding box of alpha
y, x = np.where(alpha)
y0, y1 = max(y.min() - 1, 0), min(y.max() + 1, H)
x0, x1 = max(x.min() - 1, 0), min(x.max() + 1, W)
image_center = image[y0:y1, x0:x1]
# resize the longer side to H * 0.9
H, W, _ = image_center.shape
if H > W:
W = int(W * (height * 0.9) / H)
H = int(height * 0.9)
else:
H = int(H * (width * 0.9) / W)
W = int(width * 0.9)
image_center = np.array(Image.fromarray(image_center).resize((W, H)))
# pad to H, W
start_h = (height - H) // 2
start_w = (width - W) // 2
image = np.zeros((height, width, 4), dtype=np.uint8)
image[start_h : start_h + H, start_w : start_w + W] = image_center
image = image.astype(np.float32) / 255.0
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
image = (image * 255).clip(0, 255).astype(np.uint8)
image = Image.fromarray(image)
return image
def run_ig2mv_pipeline(
self,
pipe,
mesh,
num_views,
text,
image,
height,
width,
num_inference_steps,
guidance_scale,
seed,
remove_bg_fn=None,
reference_conditioning_scale=1.0,
negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
lora_scale=1.0,
device="cuda",
):
# Prepare cameras
cameras = get_orthogonal_camera(
elevation_deg=[0, 0, 0, 0, 89.99, -89.99],
distance=[1.8] * num_views,
left=-0.55,
right=0.55,
bottom=-0.55,
top=0.55,
azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
device=device,
)
ctx = NVDiffRastContextWrapper(device=device, context_type="cuda")
mesh, mesh_bp = load_mesh(mesh, rescale=True, device=device)
render_out = render(
ctx,
mesh,
cameras,
height=height,
width=width,
render_attr=False,
normal_background=0.0,
)
pos_images = tensor_to_image((render_out.pos + 0.5).clamp(0, 1), batched=True)
normal_images = tensor_to_image(
(render_out.normal / 2 + 0.5).clamp(0, 1), batched=True
)
control_images = (
torch.cat(
[
(render_out.pos + 0.5).clamp(0, 1),
(render_out.normal / 2 + 0.5).clamp(0, 1),
],
dim=-1,
)
.permute(0, 3, 1, 2)
.to(device)
)
# Prepare image
reference_image = Image.open(image) if isinstance(image, str) else image
if len(reference_image.split()) == 1:
reference_image = reference_image.convert("RGBA")
if remove_bg_fn is not None and reference_image.mode == "RGB":
reference_image = remove_bg_fn(reference_image)
reference_image = self.preprocess_image(reference_image, height, width)
elif reference_image.mode == "RGBA":
reference_image = self.preprocess_image(reference_image, height, width)
pipe_kwargs = {}
if seed != -1 and isinstance(seed, int):
pipe_kwargs["generator"] = torch.Generator(device=device).manual_seed(seed)
images = pipe(
text,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=num_views,
control_image=control_images,
control_conditioning_scale=1.0,
reference_image=reference_image,
reference_conditioning_scale=reference_conditioning_scale,
negative_prompt=negative_prompt,
cross_attention_kwargs={"scale": lora_scale},
mesh=mesh_bp,
**pipe_kwargs,
).images
return images, pos_images, normal_images, reference_image, mesh, mesh_bp
def bake_from_multiview(
self,
render,
views,
camera_elevs,
camera_azims,
view_weights,
method="graphcut",
bake_exp=4,
):
project_textures, project_weighted_cos_maps = [], []
project_boundary_maps = []
for view, camera_elev, camera_azim, weight in zip(
views, camera_elevs, camera_azims, view_weights
):
project_texture, project_cos_map, project_boundary_map = (
render.back_project(view, camera_elev, camera_azim)
)
project_cos_map = weight * (project_cos_map**bake_exp)
project_textures.append(project_texture)
project_weighted_cos_maps.append(project_cos_map)
project_boundary_maps.append(project_boundary_map)
if method == "fast":
texture, ori_trust_map = render.fast_bake_texture(
project_textures, project_weighted_cos_maps
)
else:
raise f"no method {method}"
return texture, ori_trust_map > 1e-8
def texture_inpaint(self, render, texture, mask):
texture_np = render.uv_inpaint(texture, mask)
texture = torch.tensor(texture_np / 255).float().to(texture.device)
return texture
@torch.no_grad()
def __call__(self, image, mesh, remove_bg=True, seed=2025):
if remove_bg:
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to(self.config.device)
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
remove_bg_fn = lambda x: self.remove_bg(
x, birefnet, transform_image, self.config.device
)
else:
remove_bg_fn = None
if isinstance(mesh, trimesh.Scene):
mesh = mesh.to_geometry()
# multi-view generation pipeline
images, pos_images, normal_images, reference_image, textured_mesh, mesh_bp = (
self.run_ig2mv_pipeline(
self.ig2mv_pipe,
mesh=mesh,
num_views=self.config.num_views,
text=self.config.text,
image=image,
height=768,
width=768,
num_inference_steps=self.config.num_inference_steps,
guidance_scale=self.config.guidance_scale,
seed=seed if seed is not None else self.config.seed,
lora_scale=self.config.lora_scale,
reference_conditioning_scale=self.config.reference_conditioning_scale,
negative_prompt=self.config.negative_prompt,
device=self.config.device,
remove_bg_fn=remove_bg_fn,
)
)
for i in range(len(images)):
images[i] = images[i].resize(
(self.config.render_size, self.config.render_size),
Image.Resampling.LANCZOS,
)
mesh = self.mesh_uv_wrap(mesh_bp)
self.mesh_render.load_mesh(mesh, auto_center=False, scale_factor=1.0)
# texture baker
texture, mask = self.bake_from_multiview(
self.mesh_render,
images,
self.config.selected_camera_elevs,
self.config.selected_camera_azims,
self.config.selected_view_weights,
method="fast",
)
mask_np = (mask.squeeze(-1).cpu().numpy() * 255).astype(np.uint8)
# texture inpaint
texture = self.texture_inpaint(self.mesh_render, texture, mask_np)
self.mesh_render.set_texture(texture)
textured_mesh = self.mesh_render.save_mesh()
return textured_mesh