ReubenSun's picture
1
2ac1c2d
import torch
import numpy as np
import rembg
from PIL import Image
from tqdm import tqdm
from diffusers import DDIMScheduler
from torchvision import transforms
from step1x3d_geometry.utils.typing import *
from step1x3d_geometry.utils.misc import get_device
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
r"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
`num_inference_steps` and `sigmas` must be `None`.
sigmas (`List[float]`, *optional*):
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
`num_inference_steps` and `timesteps` must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None and sigmas is not None:
raise ValueError(
"Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
)
if timesteps is not None:
accepts_timesteps = "timesteps" in set(
inspect.signature(scheduler.set_timesteps).parameters.keys()
)
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
accept_sigmas = "sigmas" in set(
inspect.signature(scheduler.set_timesteps).parameters.keys()
)
if not accept_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" sigmas schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
@torch.no_grad()
def ddim_sample(
ddim_scheduler: DDIMScheduler,
diffusion_model: torch.nn.Module,
shape: Union[List[int], Tuple[int]],
visual_cond: torch.FloatTensor,
caption_cond: torch.FloatTensor,
label_cond: torch.FloatTensor,
steps: int,
eta: float = 0.0,
guidance_scale: float = 3.0,
do_classifier_free_guidance: bool = True,
generator: Optional[torch.Generator] = None,
device: torch.device = "cuda:0",
disable_prog: bool = True,
):
assert steps > 0, f"{steps} must > 0."
# init latents
if visual_cond is not None:
bsz = visual_cond.shape[0]
device = visual_cond.device
dtype = visual_cond.dtype
if caption_cond is not None:
bsz = caption_cond.shape[0]
device = caption_cond.device
dtype = caption_cond.dtype
if label_cond is not None:
bsz = label_cond.shape[0]
device = label_cond.device
dtype = label_cond.dtype
if do_classifier_free_guidance:
bsz = bsz // 2
latents = torch.randn(
(bsz, *shape),
generator=generator,
device=device,
dtype=dtype,
)
try:
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * scheduler.init_noise_sigma
except AttributeError:
pass
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
extra_step_kwargs = {"generator": generator}
# set timesteps
timesteps, num_inference_steps = retrieve_timesteps(
scheduler,
steps,
device,
)
if eta > 0:
assert 0 <= eta <= 1, f"eta must be between [0, 1]. Got {eta}."
assert (
scheduler.__class__.__name__ == "DDIMScheduler"
), f"eta is only used with the DDIMScheduler."
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, and between [0, 1]
extra_step_kwargs["eta"] = eta
# reverse
for i, t in enumerate(
tqdm(timesteps, disable=disable_prog, desc="DDIM Sampling:", leave=False)
):
# expand the latents if we are doing classifier free guidance
latent_model_input = (
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
)
# predict the noise residual
timestep_tensor = torch.tensor([t], dtype=torch.long, device=device)
timestep_tensor = timestep_tensor.expand(latent_model_input.shape[0])
noise_pred = diffusion_model.forward(
latent_model_input, timestep_tensor, visual_cond, caption_cond, label_cond
).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
# compute the previous noisy sample x_t -> x_t-1
latents = ddim_scheduler.step(
noise_pred, t, latents, **extra_step_kwargs
).prev_sample
yield latents, t
@torch.no_grad()
def flow_sample(
scheduler: DDIMScheduler,
diffusion_model: torch.nn.Module,
shape: Union[List[int], Tuple[int]],
visual_cond: torch.FloatTensor,
caption_cond: torch.FloatTensor,
label_cond: torch.FloatTensor,
steps: int,
eta: float = 0.0,
guidance_scale: float = 3.0,
do_classifier_free_guidance: bool = True,
generator: Optional[torch.Generator] = None,
device: torch.device = "cuda:0",
disable_prog: bool = True,
):
assert steps > 0, f"{steps} must > 0."
# init latents
if visual_cond is not None:
bsz = visual_cond.shape[0]
device = visual_cond.device
dtype = visual_cond.dtype
if caption_cond is not None:
bsz = caption_cond.shape[0]
device = caption_cond.device
dtype = caption_cond.dtype
if label_cond is not None:
bsz = label_cond.shape[0]
device = label_cond.device
dtype = label_cond.dtype
if do_classifier_free_guidance:
bsz = bsz // 2
latents = torch.randn(
(bsz, *shape),
generator=generator,
device=device,
dtype=dtype,
)
try:
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * scheduler.init_noise_sigma
except AttributeError:
pass
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
extra_step_kwargs = {"generator": generator}
# set timesteps
timesteps, num_inference_steps = retrieve_timesteps(
scheduler,
steps + 1,
device,
)
if eta > 0:
assert 0 <= eta <= 1, f"eta must be between [0, 1]. Got {eta}."
assert (
scheduler.__class__.__name__ == "DDIMScheduler"
), f"eta is only used with the DDIMScheduler."
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, and between [0, 1]
extra_step_kwargs["eta"] = eta
# reverse
distance = (timesteps[:-1] - timesteps[1:]) / scheduler.config.num_train_timesteps
for i, t in enumerate(
tqdm(timesteps[:-1], disable=disable_prog, desc="Flow Sampling:", leave=False)
):
# expand the latents if we are doing classifier free guidance
latent_model_input = (
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
)
# predict the noise residual
timestep_tensor = torch.tensor([t], dtype=latents.dtype, device=device)
timestep_tensor = timestep_tensor.expand(latent_model_input.shape[0])
noise_pred = diffusion_model.forward(
latent_model_input, timestep_tensor, visual_cond, caption_cond, label_cond
).sample
if isinstance(noise_pred, tuple):
noise_pred, layer_idx_list, ones_list, pred_c_list = noise_pred
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
# compute the previous noisy sample x_t -> x_t-1
latents = latents - distance[i] * noise_pred
yield latents, t
def compute_snr(noise_scheduler, timesteps):
"""
Computes SNR as per
https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
"""
alphas_cumprod = noise_scheduler.alphas_cumprod
sqrt_alphas_cumprod = alphas_cumprod**0.5
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5
# Expand the tensors.
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[
timesteps
].float()
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
alpha = sqrt_alphas_cumprod.expand(timesteps.shape)
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(
device=timesteps.device
)[timesteps].float()
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)
# Compute SNR.
snr = (alpha / sigma) ** 2
return snr
def read_image(img, img_size=224):
transform = transforms.Compose(
[
transforms.Resize(
img_size, transforms.InterpolationMode.BICUBIC, antialias=True
),
transforms.CenterCrop(img_size), # crop a (224, 224) square
transforms.ToTensor(),
]
)
rgb = Image.open(img)
rgb = transform(rgb)[:3, ...].permute(1, 2, 0)
return rgb
def preprocess_image(
images_pil: List[Image.Image],
force: bool = False,
background_color: List[int] = [255, 255, 255],
foreground_ratio: float = 0.95,
):
r"""
Crop and remote the background of the input image
Args:
image_pil (`List[PIL.Image.Image]`):
List of `PIL.Image.Image` objects representing the input image.
force (`bool`, *optional*, defaults to `False`):
Whether to force remove the background even if the image has an alpha channel.
Returns:
`List[PIL.Image.Image]`: List of `PIL.Image.Image` objects representing the preprocessed image.
"""
preprocessed_images = []
for i in range(len(images_pil)):
image = images_pil[i]
width, height, size = image.width, image.height, image.size
do_remove = True
if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
# explain why current do not rm bg
print(
"alhpa channl not empty, skip remove background, using alpha channel as mask"
)
do_remove = False
do_remove = do_remove or force
if do_remove:
image = rembg.remove(image)
# calculate the min bbox of the image
alpha = image.split()[-1]
bboxs = alpha.getbbox()
x1, y1, x2, y2 = bboxs
dy, dx = y2 - y1, x2 - x1
s = min(height * foreground_ratio / dy, width * foreground_ratio / dx)
Ht, Wt = int(dy * s), int(dx * s)
background = Image.new("RGBA", image.size, (*background_color, 255))
image = Image.alpha_composite(background, image)
image = image.crop(alpha.getbbox())
alpha = alpha.crop(alpha.getbbox())
# Calculate the new size after rescaling
new_size = tuple(int(dim * foreground_ratio) for dim in size)
# Resize the image while maintaining the aspect ratio
resized_image = image.resize((Wt, Ht))
resized_alpha = alpha.resize((Wt, Ht))
# Create a new image with the original size and white background
padded_image = Image.new("RGB", size, tuple(background_color))
padded_alpha = Image.new("L", size, (0))
paste_position = (
(width - resized_image.width) // 2,
(height - resized_image.height) // 2,
)
padded_image.paste(resized_image, paste_position)
padded_alpha.paste(resized_alpha, paste_position)
# expand image to 1:1
width, height = padded_image.size
if width == height:
padded_image.putalpha(padded_alpha)
preprocessed_images.append(padded_image)
continue
new_size = (max(width, height), max(width, height))
new_image = Image.new("RGB", new_size, tuple(background_color))
new_alpha = Image.new("L", new_size, (0))
paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2)
new_image.paste(padded_image, paste_position)
new_alpha.paste(padded_alpha, paste_position)
new_image.putalpha(new_alpha)
preprocessed_images.append(new_image)
return preprocessed_images