Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import numpy as np | |
import rembg | |
from PIL import Image | |
from tqdm import tqdm | |
from diffusers import DDIMScheduler | |
from torchvision import transforms | |
from step1x3d_geometry.utils.typing import * | |
from step1x3d_geometry.utils.misc import get_device | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
def retrieve_timesteps( | |
scheduler, | |
num_inference_steps: Optional[int] = None, | |
device: Optional[Union[str, torch.device]] = None, | |
timesteps: Optional[List[int]] = None, | |
sigmas: Optional[List[float]] = None, | |
**kwargs, | |
): | |
r""" | |
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
Args: | |
scheduler (`SchedulerMixin`): | |
The scheduler to get timesteps from. | |
num_inference_steps (`int`): | |
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
must be `None`. | |
device (`str` or `torch.device`, *optional*): | |
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
`num_inference_steps` and `sigmas` must be `None`. | |
sigmas (`List[float]`, *optional*): | |
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
`num_inference_steps` and `timesteps` must be `None`. | |
Returns: | |
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
second element is the number of inference steps. | |
""" | |
if timesteps is not None and sigmas is not None: | |
raise ValueError( | |
"Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values" | |
) | |
if timesteps is not None: | |
accepts_timesteps = "timesteps" in set( | |
inspect.signature(scheduler.set_timesteps).parameters.keys() | |
) | |
if not accepts_timesteps: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" timestep schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
elif sigmas is not None: | |
accept_sigmas = "sigmas" in set( | |
inspect.signature(scheduler.set_timesteps).parameters.keys() | |
) | |
if not accept_sigmas: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" sigmas schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
else: | |
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
return timesteps, num_inference_steps | |
def ddim_sample( | |
ddim_scheduler: DDIMScheduler, | |
diffusion_model: torch.nn.Module, | |
shape: Union[List[int], Tuple[int]], | |
visual_cond: torch.FloatTensor, | |
caption_cond: torch.FloatTensor, | |
label_cond: torch.FloatTensor, | |
steps: int, | |
eta: float = 0.0, | |
guidance_scale: float = 3.0, | |
do_classifier_free_guidance: bool = True, | |
generator: Optional[torch.Generator] = None, | |
device: torch.device = "cuda:0", | |
disable_prog: bool = True, | |
): | |
assert steps > 0, f"{steps} must > 0." | |
# init latents | |
if visual_cond is not None: | |
bsz = visual_cond.shape[0] | |
device = visual_cond.device | |
dtype = visual_cond.dtype | |
if caption_cond is not None: | |
bsz = caption_cond.shape[0] | |
device = caption_cond.device | |
dtype = caption_cond.dtype | |
if label_cond is not None: | |
bsz = label_cond.shape[0] | |
device = label_cond.device | |
dtype = label_cond.dtype | |
if do_classifier_free_guidance: | |
bsz = bsz // 2 | |
latents = torch.randn( | |
(bsz, *shape), | |
generator=generator, | |
device=device, | |
dtype=dtype, | |
) | |
try: | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * scheduler.init_noise_sigma | |
except AttributeError: | |
pass | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
extra_step_kwargs = {"generator": generator} | |
# set timesteps | |
timesteps, num_inference_steps = retrieve_timesteps( | |
scheduler, | |
steps, | |
device, | |
) | |
if eta > 0: | |
assert 0 <= eta <= 1, f"eta must be between [0, 1]. Got {eta}." | |
assert ( | |
scheduler.__class__.__name__ == "DDIMScheduler" | |
), f"eta is only used with the DDIMScheduler." | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, and between [0, 1] | |
extra_step_kwargs["eta"] = eta | |
# reverse | |
for i, t in enumerate( | |
tqdm(timesteps, disable=disable_prog, desc="DDIM Sampling:", leave=False) | |
): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = ( | |
torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
) | |
# predict the noise residual | |
timestep_tensor = torch.tensor([t], dtype=torch.long, device=device) | |
timestep_tensor = timestep_tensor.expand(latent_model_input.shape[0]) | |
noise_pred = diffusion_model.forward( | |
latent_model_input, timestep_tensor, visual_cond, caption_cond, label_cond | |
).sample | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * ( | |
noise_pred_text - noise_pred_uncond | |
) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = ddim_scheduler.step( | |
noise_pred, t, latents, **extra_step_kwargs | |
).prev_sample | |
yield latents, t | |
def flow_sample( | |
scheduler: DDIMScheduler, | |
diffusion_model: torch.nn.Module, | |
shape: Union[List[int], Tuple[int]], | |
visual_cond: torch.FloatTensor, | |
caption_cond: torch.FloatTensor, | |
label_cond: torch.FloatTensor, | |
steps: int, | |
eta: float = 0.0, | |
guidance_scale: float = 3.0, | |
do_classifier_free_guidance: bool = True, | |
generator: Optional[torch.Generator] = None, | |
device: torch.device = "cuda:0", | |
disable_prog: bool = True, | |
): | |
assert steps > 0, f"{steps} must > 0." | |
# init latents | |
if visual_cond is not None: | |
bsz = visual_cond.shape[0] | |
device = visual_cond.device | |
dtype = visual_cond.dtype | |
if caption_cond is not None: | |
bsz = caption_cond.shape[0] | |
device = caption_cond.device | |
dtype = caption_cond.dtype | |
if label_cond is not None: | |
bsz = label_cond.shape[0] | |
device = label_cond.device | |
dtype = label_cond.dtype | |
if do_classifier_free_guidance: | |
bsz = bsz // 2 | |
latents = torch.randn( | |
(bsz, *shape), | |
generator=generator, | |
device=device, | |
dtype=dtype, | |
) | |
try: | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * scheduler.init_noise_sigma | |
except AttributeError: | |
pass | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
extra_step_kwargs = {"generator": generator} | |
# set timesteps | |
timesteps, num_inference_steps = retrieve_timesteps( | |
scheduler, | |
steps + 1, | |
device, | |
) | |
if eta > 0: | |
assert 0 <= eta <= 1, f"eta must be between [0, 1]. Got {eta}." | |
assert ( | |
scheduler.__class__.__name__ == "DDIMScheduler" | |
), f"eta is only used with the DDIMScheduler." | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, and between [0, 1] | |
extra_step_kwargs["eta"] = eta | |
# reverse | |
distance = (timesteps[:-1] - timesteps[1:]) / scheduler.config.num_train_timesteps | |
for i, t in enumerate( | |
tqdm(timesteps[:-1], disable=disable_prog, desc="Flow Sampling:", leave=False) | |
): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = ( | |
torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
) | |
# predict the noise residual | |
timestep_tensor = torch.tensor([t], dtype=latents.dtype, device=device) | |
timestep_tensor = timestep_tensor.expand(latent_model_input.shape[0]) | |
noise_pred = diffusion_model.forward( | |
latent_model_input, timestep_tensor, visual_cond, caption_cond, label_cond | |
).sample | |
if isinstance(noise_pred, tuple): | |
noise_pred, layer_idx_list, ones_list, pred_c_list = noise_pred | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * ( | |
noise_pred_text - noise_pred_uncond | |
) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = latents - distance[i] * noise_pred | |
yield latents, t | |
def compute_snr(noise_scheduler, timesteps): | |
""" | |
Computes SNR as per | |
https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849 | |
""" | |
alphas_cumprod = noise_scheduler.alphas_cumprod | |
sqrt_alphas_cumprod = alphas_cumprod**0.5 | |
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5 | |
# Expand the tensors. | |
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026 | |
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[ | |
timesteps | |
].float() | |
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape): | |
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None] | |
alpha = sqrt_alphas_cumprod.expand(timesteps.shape) | |
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to( | |
device=timesteps.device | |
)[timesteps].float() | |
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape): | |
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None] | |
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape) | |
# Compute SNR. | |
snr = (alpha / sigma) ** 2 | |
return snr | |
def read_image(img, img_size=224): | |
transform = transforms.Compose( | |
[ | |
transforms.Resize( | |
img_size, transforms.InterpolationMode.BICUBIC, antialias=True | |
), | |
transforms.CenterCrop(img_size), # crop a (224, 224) square | |
transforms.ToTensor(), | |
] | |
) | |
rgb = Image.open(img) | |
rgb = transform(rgb)[:3, ...].permute(1, 2, 0) | |
return rgb | |
def preprocess_image( | |
images_pil: List[Image.Image], | |
force: bool = False, | |
background_color: List[int] = [255, 255, 255], | |
foreground_ratio: float = 0.95, | |
): | |
r""" | |
Crop and remote the background of the input image | |
Args: | |
image_pil (`List[PIL.Image.Image]`): | |
List of `PIL.Image.Image` objects representing the input image. | |
force (`bool`, *optional*, defaults to `False`): | |
Whether to force remove the background even if the image has an alpha channel. | |
Returns: | |
`List[PIL.Image.Image]`: List of `PIL.Image.Image` objects representing the preprocessed image. | |
""" | |
preprocessed_images = [] | |
for i in range(len(images_pil)): | |
image = images_pil[i] | |
width, height, size = image.width, image.height, image.size | |
do_remove = True | |
if image.mode == "RGBA" and image.getextrema()[3][0] < 255: | |
# explain why current do not rm bg | |
print( | |
"alhpa channl not empty, skip remove background, using alpha channel as mask" | |
) | |
do_remove = False | |
do_remove = do_remove or force | |
if do_remove: | |
image = rembg.remove(image) | |
# calculate the min bbox of the image | |
alpha = image.split()[-1] | |
bboxs = alpha.getbbox() | |
x1, y1, x2, y2 = bboxs | |
dy, dx = y2 - y1, x2 - x1 | |
s = min(height * foreground_ratio / dy, width * foreground_ratio / dx) | |
Ht, Wt = int(dy * s), int(dx * s) | |
background = Image.new("RGBA", image.size, (*background_color, 255)) | |
image = Image.alpha_composite(background, image) | |
image = image.crop(alpha.getbbox()) | |
alpha = alpha.crop(alpha.getbbox()) | |
# Calculate the new size after rescaling | |
new_size = tuple(int(dim * foreground_ratio) for dim in size) | |
# Resize the image while maintaining the aspect ratio | |
resized_image = image.resize((Wt, Ht)) | |
resized_alpha = alpha.resize((Wt, Ht)) | |
# Create a new image with the original size and white background | |
padded_image = Image.new("RGB", size, tuple(background_color)) | |
padded_alpha = Image.new("L", size, (0)) | |
paste_position = ( | |
(width - resized_image.width) // 2, | |
(height - resized_image.height) // 2, | |
) | |
padded_image.paste(resized_image, paste_position) | |
padded_alpha.paste(resized_alpha, paste_position) | |
# expand image to 1:1 | |
width, height = padded_image.size | |
if width == height: | |
padded_image.putalpha(padded_alpha) | |
preprocessed_images.append(padded_image) | |
continue | |
new_size = (max(width, height), max(width, height)) | |
new_image = Image.new("RGB", new_size, tuple(background_color)) | |
new_alpha = Image.new("L", new_size, (0)) | |
paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2) | |
new_image.paste(padded_image, paste_position) | |
new_alpha.paste(padded_alpha, paste_position) | |
new_image.putalpha(new_alpha) | |
preprocessed_images.append(new_image) | |
return preprocessed_images | |