Spaces:
Running
on
Zero
Running
on
Zero
# Some parts of this file are adapted from Hugging Face Diffusers library. | |
from dataclasses import dataclass | |
import re | |
import math | |
import torch | |
from torch import nn | |
from typing import Callable, List, Optional, Union, Dict, Any | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.utils import logging | |
from diffusers.models.attention_processor import ( | |
Attention, | |
AttentionProcessor, | |
AttnProcessor, | |
) | |
from diffusers.models.embeddings import PatchEmbed, PixArtAlphaTextProjection | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.models.normalization import AdaLayerNormSingle | |
from ..attention_processor import FusedAttnProcessor2_0, AttnProcessor2_0 | |
from ..attention import MultiCondBasicTransformerBlock | |
import step1x3d_geometry | |
from step1x3d_geometry.utils.base import BaseModule | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class Transformer1DModelOutput: | |
sample: torch.FloatTensor | |
class PixArtTransformer1DModel(ModelMixin, ConfigMixin): | |
r""" | |
A 1D Transformer model as introduced in PixArt family of models (https://arxiv.org/abs/2310.00426, | |
https://arxiv.org/abs/2403.04692). | |
Parameters: | |
num_attention_heads (`int`, *optional*, defaults to 16): | |
The number of heads to use for multi-head attention. | |
width (`int`, *optional*, defaults to 2048): | |
Maximum sequence length in latent space (equivalent to max_seq_length in Transformers). | |
Determines the first dimension size of positional embedding matrices[1](@ref). | |
in_channels (`int`, *optional*, defaults to 64): | |
The number of channels in the input and output (specify if the input is **continuous**). | |
num_layers (`int`, *optional*, defaults to 1): | |
The number of layers of Transformer blocks to use. | |
cross_attention_dim (`int`, *optional*): | |
Dimensionality of conditional embeddings for cross-attention mechanisms | |
use_cross_attention_2 (`bool`, *optional*): | |
Flag to enable secondary cross-attention mechanism. Used for multi-modal conditioning | |
when processing hybrid inputs (e.g., text + image prompts)[1](@ref). | |
cross_attention_2_dim (`int`, *optional*, defaults to 1024): | |
Dimensionality of secondary cross-attention embeddings. Specifies encoding dimensions | |
for additional conditional modalities when use_cross_attention_2 is enabled[1](@ref). | |
""" | |
_supports_gradient_checkpointing = True | |
_no_split_modules = ["MultiCondBasicTransformerBlock", "PatchEmbed"] | |
_skip_layerwise_casting_patterns = ["pos_embed", "norm", "adaln_single"] | |
def __init__( | |
self, | |
num_attention_heads: int = 16, | |
width: int = 2048, | |
in_channels: int = 4, | |
num_layers: int = 28, | |
cross_attention_dim: int = 768, | |
use_cross_attention_2: bool = True, | |
cross_attention_2_dim: int = 1024, | |
use_cross_attention_3: bool = True, | |
cross_attention_3_dim: int = 1024, | |
): | |
super().__init__() | |
# Set some common variables used across the board. | |
self.out_channels = in_channels | |
self.num_heads = num_attention_heads | |
self.inner_dim = width | |
self.proj_in = nn.Linear(self.config.in_channels, self.inner_dim, bias=True) | |
# 2. Initialize the transformer blocks. | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
MultiCondBasicTransformerBlock( | |
self.inner_dim, | |
self.config.num_attention_heads, | |
use_self_attention=True, | |
use_cross_attention=True, | |
self_attention_norm_type="ada_norm_single", | |
cross_attention_dim=self.config.cross_attention_dim, | |
cross_attention_norm_type="ada_norm_single", | |
use_cross_attention_2=self.config.use_cross_attention_2, | |
cross_attention_2_dim=self.config.cross_attention_2_dim, | |
cross_attention_2_norm_type="ada_norm_single", | |
use_cross_attention_3=self.config.use_cross_attention_3, | |
cross_attention_3_dim=self.config.cross_attention_3_dim, | |
cross_attention_3_norm_type="ada_norm_single", | |
dropout=0.0, | |
attention_bias=False, | |
activation_fn="gelu-approximate", | |
num_embeds_ada_norm=1000, | |
norm_elementwise_affine=True, | |
upcast_attention=False, | |
norm_eps=1e-6, | |
attention_type="default", | |
) | |
for _ in range(self.config.num_layers) | |
] | |
) | |
# 3. Output blocks. | |
self.norm_out = nn.RMSNorm(self.inner_dim, elementwise_affine=True, eps=1e-6) | |
self.scale_shift_table = nn.Parameter( | |
torch.randn(2, self.inner_dim) / self.inner_dim**0.5 | |
) | |
self.proj_out = nn.Linear(self.inner_dim, self.out_channels) | |
self.adaln_single = AdaLayerNormSingle( | |
self.inner_dim, use_additional_conditions=None | |
) | |
self.gradient_checkpointing = False | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors | |
def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
r""" | |
Returns: | |
`dict` of attention processors: A dictionary containing all attention processors used in the model with | |
indexed by its weight name. | |
""" | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors( | |
name: str, | |
module: torch.nn.Module, | |
processors: Dict[str, AttentionProcessor], | |
): | |
if hasattr(module, "get_processor"): | |
processors[f"{name}.processor"] = module.get_processor() | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
return processors | |
for name, module in self.named_children(): | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
def set_attn_processor( | |
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]] | |
): | |
r""" | |
Sets the attention processor to use to compute attention. | |
Parameters: | |
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
for **all** `Attention` layers. | |
If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
processor. This is strongly recommended when setting trainable attention processors. | |
""" | |
count = len(self.attn_processors.keys()) | |
if isinstance(processor, dict) and len(processor) != count: | |
raise ValueError( | |
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
) | |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
if hasattr(module, "set_processor"): | |
if not isinstance(processor, dict): | |
module.set_processor(processor) | |
else: | |
module.set_processor(processor.pop(f"{name}.processor")) | |
for sub_name, child in module.named_children(): | |
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
for name, module in self.named_children(): | |
fn_recursive_attn_processor(name, module, processor) | |
def set_default_attn_processor(self): | |
""" | |
Disables custom attention processors and sets the default attention implementation. | |
""" | |
self.set_attn_processor(AttnProcessor2_0()) | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections | |
def fuse_qkv_projections(self): | |
""" | |
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) | |
are fused. For cross-attention modules, key and value projection matrices are fused. | |
<Tip warning={true}> | |
This API is 🧪 experimental. | |
</Tip> | |
""" | |
self.original_attn_processors = None | |
for _, attn_processor in self.attn_processors.items(): | |
if "Added" in str(attn_processor.__class__.__name__): | |
raise ValueError( | |
"`fuse_qkv_projections()` is not supported for models having added KV projections." | |
) | |
self.original_attn_processors = self.attn_processors | |
for module in self.modules(): | |
if isinstance(module, Attention): | |
module.fuse_projections(fuse=True) | |
self.set_attn_processor(FusedAttnProcessor2_0()) | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections | |
def unfuse_qkv_projections(self): | |
"""Disables the fused QKV projection if enabled. | |
<Tip warning={true}> | |
This API is 🧪 experimental. | |
</Tip> | |
""" | |
if self.original_attn_processors is not None: | |
self.set_attn_processor(self.original_attn_processors) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
timestep: Optional[torch.LongTensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
encoder_hidden_states_2: Optional[torch.Tensor] = None, | |
encoder_hidden_states_3: Optional[torch.Tensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
encoder_attention_mask_2: Optional[torch.Tensor] = None, | |
encoder_attention_mask_3: Optional[torch.Tensor] = None, | |
return_dict: bool = True, | |
): | |
""" | |
The [`PixArtTransformer2DModel`] forward method. | |
Args: | |
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, n_tokens)`): | |
Input `hidden_states`. | |
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): | |
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to | |
self-attention. | |
encoder_hidden_states_2 (`torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): | |
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to | |
self-attention. | |
encoder_hidden_states_3 (`torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): | |
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to | |
self-attention. | |
timestep (`torch.LongTensor`, *optional*): | |
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. | |
cross_attention_kwargs ( `Dict[str, Any]`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
attention_mask ( `torch.Tensor`, *optional*): | |
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask | |
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large | |
negative values to the attention scores corresponding to "discard" tokens. | |
encoder_attention_mask ( `torch.Tensor`, *optional*): | |
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: | |
* Mask `(batch, sequence_length)` True = keep, False = discard. | |
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. | |
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format | |
above. This bias will be added to the cross-attention scores. | |
encoder_attention_mask_2 ( `torch.Tensor`, *optional*): | |
Cross-attention mask applied to `encoder_hidden_states_2`. Two formats supported: | |
* Mask `(batch, sequence_length)` True = keep, False = discard. | |
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. | |
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format | |
above. This bias will be added to the cross-attention scores. | |
encoder_attention_mask_3 ( `torch.Tensor`, *optional*): | |
Cross-attention mask applied to `encoder_hidden_states_3`. Two formats supported: | |
* Mask `(batch, sequence_length)` True = keep, False = discard. | |
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. | |
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format | |
above. This bias will be added to the cross-attention scores. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain | |
tuple. | |
Returns: | |
If `return_dict` is True, an [`~Transformer1DModelOutput`] is returned, otherwise a | |
`tuple` where the first element is the sample tensor. | |
""" | |
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension. | |
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward. | |
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias. | |
# expects mask of shape: | |
# [batch, key_tokens] | |
# adds singleton query_tokens dimension: | |
# [batch, 1, key_tokens] | |
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: | |
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) | |
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) | |
if attention_mask is not None and attention_mask.ndim == 2: | |
# assume that mask is expressed as: | |
# (1 = keep, 0 = discard) | |
# convert mask into a bias that can be added to attention scores: | |
# (keep = +0, discard = -10000.0) | |
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 | |
attention_mask = attention_mask.unsqueeze(1) | |
# convert encoder_attention_mask to a bias the same way we do for attention_mask | |
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: | |
encoder_attention_mask = ( | |
1 - encoder_attention_mask.to(hidden_states.dtype) | |
) * -10000.0 | |
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) | |
# convert encoder_attention_mask_2 to a bias the same way we do for attention_mask | |
if encoder_attention_mask_2 is not None and encoder_attention_mask_2.ndim == 2: | |
encoder_attention_mask_2 = ( | |
1 - encoder_attention_mask_2.to(hidden_states.dtype) | |
) * -10000.0 | |
encoder_attention_mask_2 = encoder_attention_mask_2.unsqueeze(1) | |
# convert encoder_attention_mask_2 to a bias the same way we do for attention_mask | |
if encoder_attention_mask_3 is not None and encoder_attention_mask_3.ndim == 2: | |
encoder_attention_mask_3 = ( | |
1 - encoder_attention_mask_3.to(hidden_states.dtype) | |
) * -10000.0 | |
encoder_attention_mask_3 = encoder_attention_mask_3.unsqueeze(1) | |
# 1. Input | |
batch_size = hidden_states.shape[0] | |
timestep, embedded_timestep = self.adaln_single( | |
timestep, batch_size=batch_size, hidden_dtype=hidden_states.dtype | |
) | |
hidden_states = self.proj_in(hidden_states) | |
# 2. Blocks | |
for block in self.transformer_blocks: | |
if torch.is_grad_enabled() and self.gradient_checkpointing: | |
hidden_states = self._gradient_checkpointing_func( | |
block, | |
hidden_states, | |
attention_mask, | |
encoder_hidden_states, | |
encoder_hidden_states_2, | |
encoder_hidden_states_3, | |
encoder_attention_mask, | |
encoder_attention_mask_2, | |
encoder_attention_mask_3, | |
timestep, | |
cross_attention_kwargs, | |
None, | |
) | |
else: | |
hidden_states = block( | |
hidden_states, | |
attention_mask=attention_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_hidden_states_2=encoder_hidden_states_2, | |
encoder_hidden_states_3=encoder_hidden_states_3, | |
encoder_attention_mask=encoder_attention_mask, | |
encoder_attention_mask_2=encoder_attention_mask_2, | |
encoder_attention_mask_3=encoder_attention_mask_3, | |
timestep=timestep, | |
cross_attention_kwargs=cross_attention_kwargs, | |
class_labels=None, | |
) | |
# 3. Output | |
shift, scale = ( | |
self.scale_shift_table[None] | |
+ embedded_timestep[:, None].to(self.scale_shift_table.device) | |
).chunk(2, dim=1) | |
hidden_states = self.norm_out(hidden_states) | |
# Modulation | |
hidden_states = hidden_states * (1 + scale.to(hidden_states.device)) + shift.to( | |
hidden_states.device | |
) | |
hidden_states = self.proj_out(hidden_states) | |
hidden_states = hidden_states.squeeze(1) | |
if not return_dict: | |
return (hidden_states,) | |
return Transformer1DModelOutput(sample=hidden_states) | |
class PixArtDenoiser(BaseModule): | |
class Config(BaseModule.Config): | |
pretrained_model_name_or_path: Optional[str] = None | |
input_channels: int = 32 | |
width: int = 768 | |
layers: int = 28 | |
num_heads: int = 16 | |
condition_dim: int = 1024 | |
multi_condition_type: str = "cross_attention" | |
use_visual_condition: bool = False | |
visual_condition_dim: int = 1024 | |
n_views: int = 1 # for multi-view condition | |
use_caption_condition: bool = False | |
caption_condition_dim: int = 1024 | |
use_label_condition: bool = False | |
label_condition_dim: int = 1024 | |
identity_init: bool = False | |
cfg: Config | |
def configure(self) -> None: | |
self.dit_model = PixArtTransformer1DModel( | |
num_attention_heads=self.cfg.num_heads, | |
width=self.cfg.width, | |
in_channels=self.cfg.input_channels, | |
num_layers=self.cfg.layers, | |
cross_attention_dim=self.cfg.condition_dim, | |
use_cross_attention_2=self.cfg.use_caption_condition | |
and self.cfg.multi_condition_type == "cross_attention", | |
cross_attention_2_dim=self.cfg.condition_dim, | |
use_cross_attention_3=self.cfg.use_label_condition | |
and self.cfg.multi_condition_type == "cross_attention", | |
cross_attention_3_dim=self.cfg.condition_dim, | |
) | |
if ( | |
self.cfg.use_visual_condition | |
and self.cfg.visual_condition_dim != self.cfg.condition_dim | |
): | |
self.proj_visual_condtion = nn.Sequential( | |
nn.RMSNorm(self.cfg.visual_condition_dim), | |
nn.Linear(self.cfg.visual_condition_dim, self.cfg.condition_dim), | |
) | |
if ( | |
self.cfg.use_caption_condition | |
and self.cfg.caption_condition_dim != self.cfg.condition_dim | |
): | |
self.proj_caption_condtion = nn.Sequential( | |
nn.RMSNorm(self.cfg.caption_condition_dim), | |
nn.Linear(self.cfg.caption_condition_dim, self.cfg.condition_dim), | |
) | |
if ( | |
self.cfg.use_label_condition | |
and self.cfg.label_condition_dim != self.cfg.condition_dim | |
): | |
self.proj_label_condtion = nn.Sequential( | |
nn.RMSNorm(self.cfg.label_condition_dim), | |
nn.Linear(self.cfg.label_condition_dim, self.cfg.condition_dim), | |
) | |
if self.cfg.identity_init: | |
self.identity_initialize() | |
if self.cfg.pretrained_model_name_or_path: | |
print( | |
f"Loading pretrained DiT model from {self.cfg.pretrained_model_name_or_path}" | |
) | |
ckpt = torch.load( | |
self.cfg.pretrained_model_name_or_path, | |
map_location="cpu", | |
weights_only=False, | |
) | |
if "state_dict" in ckpt.keys(): | |
ckpt = ckpt["state_dict"] | |
self.load_state_dict(ckpt, strict=True) | |
def identity_initialize(self): | |
for block in self.dit_model.blocks: | |
nn.init.constant_(block.attn.c_proj.weight, 0) | |
nn.init.constant_(block.attn.c_proj.bias, 0) | |
nn.init.constant_(block.cross_attn.c_proj.weight, 0) | |
nn.init.constant_(block.cross_attn.c_proj.bias, 0) | |
nn.init.constant_(block.mlp.c_proj.weight, 0) | |
nn.init.constant_(block.mlp.c_proj.bias, 0) | |
def forward( | |
self, | |
model_input: torch.FloatTensor, | |
timestep: torch.LongTensor, | |
visual_condition: Optional[torch.FloatTensor] = None, | |
caption_condition: Optional[torch.FloatTensor] = None, | |
label_condition: Optional[torch.FloatTensor] = None, | |
attention_kwargs: Dict[str, torch.Tensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
return_dict: bool = True, | |
): | |
r""" | |
Args: | |
model_input (torch.FloatTensor): [bs, n_data, c] | |
timestep (torch.LongTensor): [bs,] | |
visual_condition (torch.FloatTensor): [bs, visual_context_tokens, c] | |
text_condition (torch.FloatTensor): [bs, text_context_tokens, c] | |
Returns: | |
sample (torch.FloatTensor): [bs, n_data, c] | |
""" | |
B, n_data, _ = model_input.shape | |
# 0. conditions projector | |
condition = [] | |
if self.cfg.use_visual_condition: | |
assert visual_condition.shape[-1] == self.cfg.visual_condition_dim | |
if self.cfg.visual_condition_dim != self.cfg.condition_dim: | |
visual_condition = self.proj_visual_condtion(visual_condition) | |
condition.append(visual_condition) | |
else: | |
visual_condition = None | |
if self.cfg.use_caption_condition: | |
assert caption_condition.shape[-1] == self.cfg.caption_condition_dim | |
if self.cfg.caption_condition_dim != self.cfg.condition_dim: | |
caption_condition = self.proj_caption_condtion(caption_condition) | |
condition.append(caption_condition) | |
else: | |
caption_condition = None | |
if self.cfg.use_label_condition: | |
assert label_condition.shape[-1] == self.cfg.label_condition_dim | |
if self.cfg.label_condition_dim != self.cfg.condition_dim: | |
label_condition = self.proj_label_condtion(label_condition) | |
condition.append(label_condition) | |
else: | |
label_condition = None | |
assert not ( | |
visual_condition is None | |
and caption_condition is None | |
and label_condition is None | |
) | |
# 1. denoise | |
if self.cfg.multi_condition_type == "cross_attention": | |
output = self.dit_model( | |
model_input, | |
timestep, | |
visual_condition, | |
caption_condition, | |
label_condition, | |
cross_attention_kwargs, | |
return_dict=return_dict, | |
) | |
elif self.cfg.multi_condition_type == "in_context": | |
output = self.dit_model( | |
model_input, | |
timestep, | |
torch.cat(condition, dim=1), | |
None, | |
None, | |
cross_attention_kwargs, | |
return_dict=return_dict, | |
) | |
else: | |
raise ValueError | |
return output | |