ReubenSun's picture
1
2ac1c2d
import random
import torch
from torch import nn
import numpy as np
import re
from einops import rearrange
from dataclasses import dataclass
from torchvision import transforms
from diffusers.models.modeling_utils import ModelMixin
from transformers import CLIPTokenizer, CLIPImageProcessor
from transformers import AutoImageProcessor, AutoModel
from transformers import T5EncoderModel, T5Tokenizer, AutoTokenizer
from transformers.utils import ModelOutput
from typing import Iterable, Optional, Union, List
import step1x3d_geometry
from step1x3d_geometry.utils.typing import *
from .clip.modeling_clip import CLIPModel
from .clip.modeling_conditional_clip import ConditionalCLIPModel
from .base import BaseVisualEncoder, ImageType
from .dinov2.modeling_dinov2 import Dinov2Model
from .dinov2.modeling_conditional_dinov2 import ConditionalDinov2Model
from .dinov2_with_registers.modeling_dinov2_with_registers import (
Dinov2WithRegistersModel,
)
CLIP_IMAGE_SIZE = 224
@dataclass
class CLIPEmbedOutput(ModelOutput):
last_hidden_state: torch.FloatTensor = None
pooler_output: torch.FloatTensor = None
embeds: torch.FloatTensor = None
class DINOEmbedOutput(ModelOutput):
last_hidden_state: torch.FloatTensor = None
pooler_output: torch.FloatTensor = None
@step1x3d_geometry.register("dinov2-clip-encoder")
class Dinov2CLIPEncoder(BaseVisualEncoder, ModelMixin):
@dataclass
class Config(BaseVisualEncoder.Config):
pretrained_model_name_or_path: Optional[str] = (
None # the pretrained model name or path for condition model
)
pretrained_clip_name_or_path: Optional[str] = (
None # the pretrained model name or path for clip
)
pretrained_dino_name_or_path: Optional[str] = (
None # the pretrained model name or path for dino
)
pretrained_linear_proj: Optional[str] = None
freeze_modulation_clip: bool = False
freeze_modulation_dino: bool = False
enable_gradient_checkpointing: bool = False
image_size: int = CLIP_IMAGE_SIZE
fuse_type: str = "concat"
dino_type: Optional[str] = None
clip_type: Optional[str] = None
kwargs: Optional[dict] = None
cfg: Config
def configure(self) -> None:
super().configure()
# Load the CLIP model and processor
if not self.cfg.encode_camera:
if self.cfg.pretrained_clip_name_or_path is not None:
self.cfg.clip_type = f"openai/{self.cfg.pretrained_clip_name_or_path.split('openai--')[-1].split('/')[0]}"
self.clip_model: CLIPModel = CLIPModel.from_pretrained(
self.cfg.pretrained_clip_name_or_path
)
else:
print("Loading CLIP model from openai/clip-vit-large-patch14")
self.dino_type = "openai/clip-vit-large-patch14"
self.clip_model: CLIPModel = CLIPModel(
config=ConditionalCLIPModel.config_class.from_pretrained(
"openai/clip-vit-large-patch14",
)
)
if self.cfg.pretrained_dino_name_or_path is not None:
self.cfg.dino_type = f"facebook/{self.cfg.pretrained_dino_name_or_path.split('facebook--')[-1].split('/')[0]}"
self.dino_model: Dinov2Model = AutoModel.from_pretrained(
self.cfg.pretrained_dino_name_or_path
)
else:
if (
self.cfg.pretrained_model_name_or_path is None
): # default to load Dinov2-base model
assert (
self.cfg.dino_type is not None
), "The dino_type should be provided"
print(f"Loading Dinov2 model from {self.cfg.dino_type}")
if "reg" in self.cfg.dino_type:
self.dino_model: Dinov2WithRegistersModel = (
Dinov2WithRegistersModel(
config=Dinov2WithRegistersModel.config_class.from_pretrained(
self.cfg.dino_type,
)
)
)
else:
self.dino_model: Dinov2Model = Dinov2Model(
config=Dinov2Model.config_class.from_pretrained(
self.dino_type,
)
)
elif "dinov2base" in self.cfg.pretrained_model_name_or_path:
print("Loading Dinov2 model from facebook/dinov2-base")
self.cfg.dino_type = "facebook/dinov2-base"
self.dino_model: Dinov2Model = Dinov2Model(
config=Dinov2Model.config_class.from_pretrained(
"facebook/dinov2-base",
)
)
elif "dinov2regbase" in self.cfg.pretrained_model_name_or_path:
print(
"Loading Dinov2 model from facebook/dinov2-with-registers-base"
)
self.cfg.dino_type = "facebook/dinov2-with-registers-base"
self.dino_model: Dinov2WithRegistersModel = (
Dinov2WithRegistersModel(
config=Dinov2WithRegistersModel.config_class.from_pretrained(
"facebook/dinov2-with-registers-base",
)
)
)
elif "dinov2reglarge" in self.cfg.pretrained_model_name_or_path:
print(
"Loading Dinov2 model from facebook/dinov2-with-registers-large"
)
self.cfg.dino_type = "facebook/dinov2-with-registers-large"
self.dino_model: Dinov2WithRegistersModel = (
Dinov2WithRegistersModel(
config=Dinov2WithRegistersModel.config_class.from_pretrained(
"facebook/dinov2-with-registers-large",
)
)
)
else:
raise ValueError(
f"Unknown Dinov2 model: {self.cfg.pretrained_model_name_or_path}"
)
else:
# clip
conditional_clip_config = ConditionalCLIPModel.config_class.from_pretrained(
self.cfg.pretrained_clip_name_or_path,
)
conditional_clip_config.vision_config.modulation_dim = (
self.cfg.camera_embeds_dim
)
self.clip_model: CLIPModel = ConditionalCLIPModel.from_pretrained(
self.cfg.pretrained_clip_name_or_path,
vision_config=conditional_clip_config.vision_config,
)
# dino
conditional_vit_config = (
ConditionalDinov2Model.config_class.from_pretrained(
self.cfg.pretrained_dino_name_or_path,
)
)
conditional_vit_config.modulation_dim = self.cfg.camera_embeds_dim
self.dino_model: ConditionalDinov2Model = (
ConditionalDinov2Model.from_pretrained(
self.cfg.pretrained_dino_name_or_path, config=conditional_vit_config
)
)
self.image_preprocess_clip = CLIPImageProcessor()
self.image_preprocess_dino = AutoImageProcessor.from_pretrained(
self.cfg.dino_type
if self.cfg.pretrained_dino_name_or_path is None
else self.cfg.pretrained_dino_name_or_path
)
self.transform_clip = transforms.Compose(
[
transforms.Resize(
CLIP_IMAGE_SIZE,
transforms.InterpolationMode.BICUBIC,
antialias=True,
), # clip is CLIP_IMAGE_SIZE
transforms.CenterCrop(CLIP_IMAGE_SIZE), # crop a square.
transforms.Normalize(
mean=[0.48145466, 0.4578275, 0.40821073],
std=[0.26862954, 0.26130258, 0.27577711],
),
]
)
self.transform_dino = transforms.Compose(
[
transforms.Resize(
self.cfg.image_size,
transforms.InterpolationMode.BICUBIC,
antialias=True,
),
transforms.CenterCrop(self.cfg.image_size), # crop a square
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
),
]
)
if self.cfg.enable_gradient_checkpointing:
self.dino_model.encoder.gradient_checkpointing = True
if self.cfg.zero_uncond_embeds:
image_size = max(self.cfg.image_size, self.cfg.image_size)
self.empty_image_embeds_dino = torch.zeros(
(self.cfg.n_views, (image_size // 14) ** 2 + 1, 1024)
).detach()
self.empty_image_embeds_clip = torch.zeros(
(self.cfg.n_views, (CLIP_IMAGE_SIZE // 14) ** 2 + 1, 1024)
).detach()
if self.cfg.fuse_type == "concat":
self.empty_image_embeds = torch.cat(
[self.empty_image_embeds_dino, self.empty_image_embeds_clip], dim=1
)
else:
raise ValueError
else:
if self.cfg.encode_camera:
self.empty_image_embeds_dino = self.encode_image_dino(
torch.zeros(
self.cfg.n_views, self.cfg.image_size, self.cfg.image_size, 3
),
self.cameras[: self.cfg.n_views],
).detach()
self.empty_image_embeds_clip = self.encode_image_clip(
torch.zeros(
self.cfg.n_views, self.cfg.image_size, self.cfg.image_size, 3
),
self.cameras[: self.cfg.n_views],
).detach()
else:
self.empty_image_embeds_dino = self.encode_image_dino(
torch.zeros(
self.cfg.n_views, self.cfg.image_size, self.cfg.image_size, 3
)
).detach()
self.empty_image_embeds_clip = self.encode_image_clip(
torch.zeros(
self.cfg.n_views, self.cfg.image_size, self.cfg.image_size, 3
)
).detach()
self.empty_image_embeds_clip, self.empty_image_embeds_dino = (
self.align_clip_dino(
self.empty_image_embeds_clip, self.empty_image_embeds_dino
)
)
self.empty_image_embeds = torch.cat(
[self.empty_image_embeds_dino, self.empty_image_embeds_clip], dim=1
)
# Freeze the clip model parameters
self.clip_model.eval()
for k, p in self.clip_model.named_parameters():
ks = k.split(".")
if (
"mod_norm1" in ks
or "mod_norm2" in ks
and not self.cfg.freeze_modulation_clip
):
p.requires_grad_(not self.cfg.freeze_modulation_clip)
else:
p.requires_grad_(False)
# freeze the dino model parameters
self.dino_model.eval()
for k, p in self.dino_model.named_parameters():
ks = k.split(".")
if (
"mod_norm1" in ks
or "mod_norm2" in ks
and not self.cfg.freeze_modulation_dino
):
p.requires_grad_(not self.cfg.freeze_modulation_dino)
else:
p.requires_grad_(False)
# add a linear projection layer to project the dino embeddings to the same dimension as clip embeddings
if (
self.clip_model.config.vision_config.hidden_size
!= self.dino_model.config.hidden_size
):
self.linear_proj = nn.Linear(
self.clip_model.config.vision_config.hidden_size,
self.dino_model.config.vision_config.hidden_size,
bias=False,
)
else:
self.linear_proj = nn.Identity()
if self.cfg.pretrained_model_name_or_path is not None:
print(f"Loading ckpt from {self.cfg.pretrained_model_name_or_path}")
ckpt = torch.load(
self.cfg.pretrained_model_name_or_path, map_location="cpu"
)["state_dict"]
pretrained_model_ckpt = {}
for k, v in ckpt.items():
if k.startswith("condition."):
pretrained_model_ckpt[k.replace("condition.", "")] = v
self.load_state_dict(pretrained_model_ckpt, strict=True)
def encode_image_clip(
self,
images: Iterable[Optional[ImageType]],
cameras: Optional[torch.Tensor] = None,
force_none_camera_embeds: bool = False,
return_dict: bool = False,
**kwargs,
) -> torch.FloatTensor:
camera_embeds = None
if isinstance(images, (np.ndarray, torch.Tensor)): # for training process
assert (
images.min() >= 0.0 and images.max() <= 1.0
), "The pixel values should be in the range of [0, 1]"
if self.cfg.encode_camera:
assert cameras is not None, "The cameras should be provided"
camera_embeds = self.encode_camera(cameras)
pixel_values = self.transform_clip(images.permute(0, 3, 1, 2))
else: # for inference process
if self.cfg.encode_camera:
if cameras is None:
bs = len(images) // self.cfg.n_views
cameras = (
self.cameras[: self.cfg.n_views]
.repeat(bs, 1, 1)
.to(self.clip_model.device)
)
camera_embeds = self.encode_camera(cameras)
pixel_values = self.image_preprocess_clip.preprocess(
images,
return_tensors="pt",
do_rescale=True,
do_resize=True,
size=CLIP_IMAGE_SIZE,
crop_size=CLIP_IMAGE_SIZE,
).pixel_values
if force_none_camera_embeds:
camera_embeds = None
if pixel_values.ndim == 4:
pixel_values = pixel_values.unsqueeze(1)
if camera_embeds is not None:
camera_embeds = camera_embeds.unsqueeze(1)
if self.cfg.encode_camera and camera_embeds is not None:
vision_outputs = self.clip_model.vision_model(
pixel_values=rearrange(
pixel_values.to(self.clip_model.device), "B N C H W -> (B N) C H W"
),
condition=rearrange(camera_embeds, "B N C -> (B N) C"),
)
else:
vision_outputs = self.clip_model.vision_model(
pixel_values=rearrange(
pixel_values.to(self.clip_model.device), "B N C H W -> (B N) C H W"
),
)
if return_dict:
# clip
pooler_output = vision_outputs[1] # pooled_output
image_features = self.clip_model.visual_projection(pooler_output)
clip_embeds = vision_outputs.last_hidden_state
clip_embeds_dict = CLIPEmbedOutput(
last_hidden_state=clip_embeds,
pooler_output=pooler_output,
embeds=image_features,
)
return clip_embeds_dict
else:
return vision_outputs.last_hidden_state
def encode_image_dino(
self,
images: Iterable[Optional[ImageType]],
cameras: Optional[torch.Tensor] = None,
force_none_camera_embeds: bool = False,
return_dict: bool = False,
**kwargs,
) -> torch.FloatTensor:
camera_embeds = None
if isinstance(images, (np.ndarray, torch.Tensor)): # for training process
assert (
images.min() >= 0.0 and images.max() <= 1.0
), "The pixel values should be in the range of [0, 1]"
if self.cfg.encode_camera:
assert cameras is not None, "The cameras should be provided"
camera_embeds = self.encode_camera(cameras)
pixel_values = self.transform_dino(images.permute(0, 3, 1, 2))
else: # for inference process
if self.cfg.encode_camera:
if cameras is None:
bs = len(images) // self.cfg.n_views
cameras = (
self.cameras[: self.cfg.n_views]
.repeat(bs, 1, 1)
.to(self.dino_model.device)
)
camera_embeds = self.encode_camera(cameras)
pixel_values = self.image_preprocess_dino.preprocess(
images,
return_tensors="pt",
do_rescale=True,
do_resize=True,
size=self.cfg.image_size,
crop_size=self.cfg.image_size,
).pixel_values
if force_none_camera_embeds:
camera_embeds = None
if pixel_values.ndim == 4:
pixel_values = pixel_values.unsqueeze(1)
if camera_embeds is not None:
camera_embeds = camera_embeds.unsqueeze(1)
if self.cfg.encode_camera and camera_embeds is not None:
vision_outputs = self.dino_model(
rearrange(
pixel_values.to(self.dino_model.device), "B N C H W -> (B N) C H W"
),
condition=rearrange(camera_embeds, "B N C -> (B N) C"),
)
else:
vision_outputs = self.dino_model(
rearrange(
pixel_values.to(self.dino_model.device), "B N C H W -> (B N) C H W"
),
)
if return_dict:
# dino
dino_embeds_dict = DINOEmbedOutput(
last_hidden_state=vision_outputs.last_hidden_state,
pooler_output=vision_outputs.pooler_output,
)
return dino_embeds_dict
else:
return vision_outputs.last_hidden_state
def align_clip_dino(self, clip_embeds, dino_embeds):
if (
clip_embeds.shape[-2] != dino_embeds.shape[-2]
): # different shape, interpolate the clip embeddings to the same shape as dino embeddings
assert (
clip_embeds.shape[-2] == (self.cfg.image_size // 14) ** 2 + 1
), "The clip embeddings should have the shape of (n_views, (image_size // 14) ** 2 + 1, 1024)"
clip_embeds_patch_tokens = clip_embeds[:, 1:].view(
clip_embeds.shape[0],
self.cfg.image_size // 14,
self.cfg.image_size // 14,
1024,
)
clip_embeds_patch_tokens = (
torch.nn.functional.interpolate(
clip_embeds_patch_tokens.permute(0, 3, 1, 2),
size=(self.cfg.image_size // 14, self.cfg.image_size // 14),
mode="bilinear",
align_corners=False,
)
.permute(0, 2, 3, 1)
.view(clip_embeds.shape[0], -1, 1024)
)
clip_embeds = torch.cat(
[clip_embeds[:, :1], clip_embeds_patch_tokens], dim=1
)
return clip_embeds, dino_embeds
def encode_image(
self,
images: Iterable[Optional[ImageType]],
cameras: Optional[torch.Tensor] = None,
force_none_camera_embeds: bool = False,
return_dict: bool = False,
**kwargs,
) -> torch.FloatTensor:
clip_embeds = self.encode_image_clip(images, cameras)
dino_embeds = self.encode_image_dino(images, cameras)
if (
self.dino_model.__class__.__name__ == "Dinov2WithRegistersModel"
): # x_norm_clstoken, x_norm_regtokens, x_norm_patchtokens
dino_embeds = torch.cat(
[
dino_embeds[:, :1],
dino_embeds[:, self.dino_model.config.num_register_tokens + 1 :],
],
dim=1,
)
clip_embeds = self.linear_proj(clip_embeds) # bs, 257, 1024
if self.cfg.fuse_type == "concat":
visual_embeds = torch.cat([dino_embeds, clip_embeds], dim=1)
# elif self.cfg.fuse_type == 'add':
# clip_embeds, dino_embeds = self.align_clip_dino(clip_embeds, dino_embeds)
else:
raise ValueError
return visual_embeds