ReubenSun's picture
1
2ac1c2d
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional, Tuple, Union
import collections.abc
from itertools import repeat
import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist
from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.utils.import_utils import is_torch_npu_available, is_xformers_available
from diffusers.models.attention import FeedForward
from diffusers.models.attention_processor import Attention, AttentionProcessor
from diffusers.models.normalization import (
AdaLayerNormContinuous,
AdaLayerNormZero,
AdaLayerNormZeroSingle,
FP32LayerNorm,
LayerNorm,
)
from .attention_processor import FluxAttnProcessor2_0, AttnProcessor2_0
@maybe_allow_in_graph
class MultiCondBasicTransformerBlock(nn.Module):
r"""
A basic Transformer block.
Parameters:
dim (`int`): The number of channels in the input and output.
num_attention_heads (`int`): The number of heads to use for multi-head attention.
attention_head_dim (`int`): The number of channels in each head.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
num_embeds_ada_norm (:
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
attention_bias (:
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
only_cross_attention (`bool`, *optional*):
Whether to use only cross-attention layers. In this case two cross attention layers are used.
double_self_attention (`bool`, *optional*):
Whether to use two self-attention layers. In this case no cross attention layers are used.
upcast_attention (`bool`, *optional*):
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
Whether to use learnable elementwise affine parameters for normalization.
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
final_dropout (`bool` *optional*, defaults to False):
Whether to apply a final dropout after the last feed-forward layer.
attention_type (`str`, *optional*, defaults to `"default"`):
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
positional_embeddings (`str`, *optional*, defaults to `None`):
The type of positional embeddings to apply to.
num_positional_embeddings (`int`, *optional*, defaults to `None`):
The maximum number of positional embeddings to apply.
"""
def __init__(
self,
dim: int,
num_attention_heads: int,
use_self_attention: bool = True,
use_cross_attention: bool = False,
self_attention_norm_type: Optional[
str
] = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen'
cross_attention_dim: Optional[int] = None,
cross_attention_norm_type: Optional[str] = None,
# parallel second cross attention
use_cross_attention_2: bool = False,
cross_attention_2_dim: Optional[int] = None,
cross_attention_2_norm_type: Optional[str] = None,
# parallel third cross attention
use_cross_attention_3: bool = False,
cross_attention_3_dim: Optional[int] = None,
cross_attention_3_norm_type: Optional[str] = None,
dropout=0.0,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
attention_bias: bool = False,
only_cross_attention: bool = False,
double_self_attention: bool = False,
upcast_attention: bool = False,
norm_elementwise_affine: bool = True,
norm_eps: float = 1e-5,
final_dropout: bool = False,
attention_type: str = "default",
positional_embeddings: Optional[str] = None,
num_positional_embeddings: Optional[int] = None,
ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
ada_norm_bias: Optional[int] = None,
ff_inner_dim: Optional[int] = None,
ff_bias: bool = True,
attention_out_bias: bool = True,
):
super().__init__()
self.dim = dim
self.num_attention_heads = num_attention_heads
self.use_self_attention = use_self_attention
self.use_cross_attention = use_cross_attention
self.self_attention_norm_type = self_attention_norm_type
self.cross_attention_dim = cross_attention_dim
self.cross_attention_norm_type = cross_attention_norm_type
self.use_cross_attention_2 = use_cross_attention_2
self.cross_attention_2_dim = cross_attention_2_dim
self.cross_attention_2_norm_type = cross_attention_2_norm_type
self.use_cross_attention_3 = use_cross_attention_3
self.cross_attention_3_dim = cross_attention_3_dim
self.cross_attention_3_norm_type = cross_attention_3_norm_type
self.dropout = dropout
self.cross_attention_dim = cross_attention_dim
self.activation_fn = activation_fn
self.attention_bias = attention_bias
self.double_self_attention = double_self_attention
self.norm_elementwise_affine = norm_elementwise_affine
self.positional_embeddings = positional_embeddings
self.num_positional_embeddings = num_positional_embeddings
self.only_cross_attention = only_cross_attention
# We keep these boolean flags for backward-compatibility.
self.use_ada_layer_norm_zero = (
num_embeds_ada_norm is not None
) and self_attention_norm_type == "ada_norm_zero"
self.use_ada_layer_norm = (
num_embeds_ada_norm is not None
) and self_attention_norm_type == "ada_norm"
self.use_ada_layer_norm_single = self_attention_norm_type == "ada_norm_single"
self.use_layer_norm = self_attention_norm_type == "layer_norm"
self.use_ada_layer_norm_continuous = (
self_attention_norm_type == "ada_norm_continuous"
)
if (
self_attention_norm_type in ("ada_norm", "ada_norm_zero")
and num_embeds_ada_norm is None
):
raise ValueError(
f"`self_attention_norm_type` is set to {self_attention_norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
f" define `num_embeds_ada_norm` if setting `self_attention_norm_type` to {self_attention_norm_type}."
)
self.self_attention_norm_type = self_attention_norm_type
self.num_embeds_ada_norm = num_embeds_ada_norm
if positional_embeddings and (num_positional_embeddings is None):
raise ValueError(
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
)
if positional_embeddings == "sinusoidal":
self.pos_embed = SinusoidalPositionalEmbedding(
dim, max_seq_length=num_positional_embeddings
)
else:
self.pos_embed = None
# Define 3 blocks. Each block has its own normalization layer.
if use_self_attention:
# 1. Self-Attn
if self_attention_norm_type == "ada_norm":
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
elif self_attention_norm_type == "ada_norm_zero":
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
elif self_attention_norm_type == "ada_norm_continuous":
self.norm1 = AdaLayerNormContinuous(
dim,
ada_norm_continous_conditioning_embedding_dim,
norm_elementwise_affine,
norm_eps,
ada_norm_bias,
"rms_norm",
)
elif (
self_attention_norm_type == "fp32_layer_norm"
or self_attention_norm_type is None
):
self.norm1 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine)
else:
self.norm1 = nn.RMSNorm(
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps
)
self.attn1 = Attention(
query_dim=dim,
heads=num_attention_heads,
dim_head=dim // num_attention_heads,
dropout=dropout,
bias=attention_bias,
cross_attention_dim=(
cross_attention_dim if only_cross_attention else None
),
upcast_attention=upcast_attention,
out_bias=attention_out_bias,
processor=AttnProcessor2_0(),
)
# 2. Cross-Attn
if use_cross_attention or double_self_attention:
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# the second cross attention block.
if cross_attention_norm_type == "ada_norm":
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
elif cross_attention_norm_type == "ada_norm_continuous":
self.norm2 = AdaLayerNormContinuous(
dim,
ada_norm_continous_conditioning_embedding_dim,
norm_elementwise_affine,
norm_eps,
ada_norm_bias,
"rms_norm",
)
elif (
cross_attention_norm_type == "fp32_layer_norm"
or cross_attention_norm_type is None
):
self.norm2 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine)
else:
self.norm2 = nn.RMSNorm(
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps
)
self.attn2 = Attention(
query_dim=dim,
cross_attention_dim=(
cross_attention_dim if not double_self_attention else None
),
heads=num_attention_heads,
dim_head=dim // num_attention_heads,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
out_bias=attention_out_bias,
processor=AttnProcessor2_0(),
) # is self-attn if encoder_hidden_states is none
else:
self.norm2 = None
self.attn2 = None
# 2'. Parallel Second Cross-Attn
if use_cross_attention_2:
assert cross_attention_2_dim is not None
if cross_attention_2_norm_type == "ada_norm":
self.norm2_2 = AdaLayerNorm(dim, num_embeds_ada_norm)
elif cross_attention_2_norm_type == "ada_norm_continuous":
self.norm2_2 = AdaLayerNormContinuous(
dim,
ada_norm_continous_conditioning_embedding_dim,
norm_elementwise_affine,
norm_eps,
ada_norm_bias,
"rms_norm",
)
elif (
cross_attention_2_norm_type == "fp32_layer_norm"
or cross_attention_2_norm_type is None
):
self.norm2_2 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine)
else:
self.norm2_2 = nn.RMSNorm(
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps
)
self.attn2_2 = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_2_dim,
heads=num_attention_heads,
dim_head=dim // num_attention_heads,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
out_bias=attention_out_bias,
processor=AttnProcessor2_0(),
)
# self.attn2_2 = Attention(
# query_dim=dim,
# cross_attention_dim=cross_attention_2_dim,
# dim_head=dim // num_attention_heads,
# heads=num_attention_heads,
# qk_norm="rms_norm" if qk_norm else None,
# cross_attention_norm=cross_attention_2_norm_type,
# eps=1e-6,
# bias=qkv_bias,
# processor=AttnProcessor2_0(),
# )
else:
self.norm2_2 = None
self.attn2_2 = None
# 2'. Parallel Third Cross-Attn
if use_cross_attention_3:
assert cross_attention_3_dim is not None
if cross_attention_3_norm_type == "ada_norm":
self.norm2_3 = AdaLayerNorm(dim, num_embeds_ada_norm)
elif cross_attention_3_norm_type == "ada_norm_continuous":
self.norm2_3 = AdaLayerNormContinuous(
dim,
ada_norm_continous_conditioning_embedding_dim,
norm_elementwise_affine,
norm_eps,
ada_norm_bias,
"rms_norm",
)
elif (
cross_attention_3_norm_type == "fp32_layer_norm"
or cross_attention_3_norm_type is None
):
self.norm2_3 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine)
else:
self.norm2_3 = nn.RMSNorm(
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps
)
self.attn2_3 = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_3_dim,
heads=num_attention_heads,
dim_head=dim // num_attention_heads,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
out_bias=attention_out_bias,
processor=AttnProcessor2_0(),
)
else:
self.norm2_3 = None
self.attn2_3 = None
# 3. Feed-forward
if self_attention_norm_type == "ada_norm_continuous":
self.norm3 = AdaLayerNormContinuous(
dim,
ada_norm_continous_conditioning_embedding_dim,
norm_elementwise_affine,
norm_eps,
ada_norm_bias,
"layer_norm",
)
elif self_attention_norm_type in ["ada_norm_zero", "ada_norm", "layer_norm"]:
self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
elif self_attention_norm_type == "layer_norm_i2vgen":
self.norm3 = None
self.ff = FeedForward(
dim,
dropout=dropout,
activation_fn=activation_fn,
final_dropout=final_dropout,
inner_dim=ff_inner_dim,
bias=ff_bias,
)
# 4. Fuser
if attention_type == "gated" or attention_type == "gated-text-image":
self.fuser = GatedSelfAttentionDense(
dim, cross_attention_dim, num_attention_heads, attention_head_dim
)
# 5. Scale-shift for PixArt-Alpha.
if self_attention_norm_type == "ada_norm_single":
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
# let chunk size default to None
self._chunk_size = None
self._chunk_dim = 0
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
# Sets chunk feed-forward
self._chunk_size = chunk_size
self._chunk_dim = dim
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_hidden_states_2: Optional[torch.Tensor] = None,
encoder_hidden_states_3: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
encoder_attention_mask_2: Optional[torch.Tensor] = None,
encoder_attention_mask_3: Optional[torch.Tensor] = None,
timestep: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
class_labels: Optional[torch.LongTensor] = None,
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
) -> torch.Tensor:
if cross_attention_kwargs is not None:
if cross_attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored."
)
# Notice that normalization is always applied before the real computation in the following blocks.
# 0. Self-Attention
batch_size = hidden_states.shape[0]
if self.self_attention_norm_type == "ada_norm":
norm_hidden_states = self.norm1(hidden_states, timestep)
elif self.self_attention_norm_type == "ada_norm_zero":
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
)
elif self.self_attention_norm_type in ["layer_norm", "layer_norm_i2vgen"]:
norm_hidden_states = self.norm1(hidden_states)
elif self.self_attention_norm_type == "ada_norm_continuous":
norm_hidden_states = self.norm1(
hidden_states, added_cond_kwargs["pooled_text_emb"]
)
elif self.self_attention_norm_type == "ada_norm_single":
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
).chunk(6, dim=1)
norm_hidden_states = self.norm1(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
else:
raise ValueError("Incorrect norm used")
if self.pos_embed is not None:
norm_hidden_states = self.pos_embed(norm_hidden_states)
# 1. Prepare GLIGEN inputs
cross_attention_kwargs = (
cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
)
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=(
encoder_hidden_states if self.only_cross_attention else None
),
attention_mask=attention_mask,
**cross_attention_kwargs,
)
if self.self_attention_norm_type == "ada_norm_zero":
attn_output = gate_msa.unsqueeze(1) * attn_output
elif self.self_attention_norm_type == "ada_norm_single":
attn_output = gate_msa * attn_output
hidden_states = attn_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
# 1.2 GLIGEN Control
if gligen_kwargs is not None:
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
# 3. Cross-Attention
if self.attn2 is not None:
if self.cross_attention_norm_type == "ada_norm":
norm_hidden_states = self.norm2(hidden_states, timestep)
elif self.cross_attention_norm_type in [
"ada_norm_zero",
"layer_norm",
"layer_norm_i2vgen",
]:
norm_hidden_states = self.norm2(hidden_states)
elif self.cross_attention_norm_type == "ada_norm_single":
# For PixArt norm2 isn't applied here:
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
norm_hidden_states = hidden_states
elif self.cross_attention_norm_type == "ada_norm_continuous":
norm_hidden_states = self.norm2(
hidden_states, added_cond_kwargs["pooled_text_emb"]
)
else:
raise ValueError("Incorrect norm")
if (
self.pos_embed is not None
and self.cross_attention_norm_type != "ada_norm_single"
):
norm_hidden_states = self.pos_embed(norm_hidden_states)
attn_output = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
**cross_attention_kwargs,
)
hidden_states = attn_output + hidden_states
# 3.1 Parallel Second Cross-Attention
if self.attn2_2 is not None:
if self.cross_attention_2_norm_type == "ada_norm":
norm_hidden_states = self.norm2_2(hidden_states, timestep)
elif self.cross_attention_2_norm_type in [
"ada_norm_zero",
"layer_norm",
"layer_norm_i2vgen",
]:
norm_hidden_states = self.norm2_2(hidden_states)
elif self.cross_attention_2_norm_type == "ada_norm_single":
# For PixArt norm2_2 isn't applied here:
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
norm_hidden_states = hidden_states
elif self.cross_attention_2_norm_type == "ada_norm_continuous":
norm_hidden_states = self.norm2_2(
hidden_states, added_cond_kwargs["pooled_text_emb"]
)
else:
raise ValueError("Incorrect norm")
if (
self.pos_embed is not None
and self.cross_attention_2_norm_type != "ada_norm_single"
):
norm_hidden_states = self.pos_embed(norm_hidden_states)
attn_output_2 = self.attn2_2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states_2,
attention_mask=encoder_attention_mask_2,
**cross_attention_kwargs,
)
hidden_states = attn_output_2 + hidden_states
# 3.2 Parallel Third Cross-Attention
if self.attn2_3 is not None:
if self.cross_attention_3_norm_type == "ada_norm":
norm_hidden_states = self.norm2_3(hidden_states, timestep)
elif self.cross_attention_3_norm_type in [
"ada_norm_zero",
"layer_norm",
"layer_norm_i2vgen",
]:
norm_hidden_states = self.norm2_3(hidden_states)
elif self.cross_attention_3_norm_type == "ada_norm_single":
# For PixArt norm2_3 isn't applied here:
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
norm_hidden_states = hidden_states
elif self.cross_attention_3_norm_type == "ada_norm_continuous":
norm_hidden_states = self.norm2_3(
hidden_states, added_cond_kwargs["pooled_text_emb"]
)
else:
raise ValueError("Incorrect norm")
if (
self.pos_embed is not None
and self.cross_attention_3_norm_type != "ada_norm_single"
):
norm_hidden_states = self.pos_embed(norm_hidden_states)
attn_output_3 = self.attn2_3(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states_3,
attention_mask=encoder_attention_mask_3,
**cross_attention_kwargs,
)
hidden_states = attn_output_3 + hidden_states
# 4. Feed-forward
# i2vgen doesn't have this norm 🤷‍♂️
if self.self_attention_norm_type == "ada_norm_continuous":
norm_hidden_states = self.norm3(
hidden_states, added_cond_kwargs["pooled_text_emb"]
)
elif not self.self_attention_norm_type == "ada_norm_single":
norm_hidden_states = self.norm3(hidden_states)
if self.self_attention_norm_type == "ada_norm_zero":
norm_hidden_states = (
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
)
if self.self_attention_norm_type == "ada_norm_single":
norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
ff_output = _chunked_feed_forward(
self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size
)
else:
ff_output = self.ff(norm_hidden_states)
if self.self_attention_norm_type == "ada_norm_zero":
ff_output = gate_mlp.unsqueeze(1) * ff_output
elif self.self_attention_norm_type == "ada_norm_single":
ff_output = gate_mlp * ff_output
hidden_states = ff_output + hidden_states
return hidden_states
@maybe_allow_in_graph
class FluxSingleTransformerBlock(nn.Module):
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
mlp_ratio: float = 4.0,
):
super().__init__()
self.mlp_hidden_dim = int(dim * mlp_ratio)
self.norm = AdaLayerNormZeroSingle(dim)
self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
self.act_mlp = nn.GELU(approximate="tanh")
self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
if is_torch_npu_available():
deprecation_message = (
"Defaulting to FluxAttnProcessor2_0_NPU for NPU devices will be removed. Attention processors "
"should be set explicitly using the `set_attn_processor` method."
)
deprecate("npu_processor", "0.34.0", deprecation_message)
processor = FluxAttnProcessor2_0_NPU()
else:
processor = FluxAttnProcessor2_0()
self.attn = Attention(
query_dim=dim,
cross_attention_dim=None,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
bias=True,
processor=processor,
qk_norm="rms_norm",
eps=1e-6,
pre_only=True,
)
def forward(
self,
hidden_states: torch.Tensor,
temb: torch.Tensor,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
) -> torch.Tensor:
residual = hidden_states
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
joint_attention_kwargs = joint_attention_kwargs or {}
attn_output = self.attn(
hidden_states=norm_hidden_states,
image_rotary_emb=image_rotary_emb,
**joint_attention_kwargs,
)
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
gate = gate.unsqueeze(1)
hidden_states = gate * self.proj_out(hidden_states)
hidden_states = residual + hidden_states
if hidden_states.dtype == torch.float16:
hidden_states = hidden_states.clip(-65504, 65504)
return hidden_states
@maybe_allow_in_graph
class FluxTransformerBlock(nn.Module):
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
qk_norm: str = "rms_norm",
eps: float = 1e-6,
):
super().__init__()
self.norm1 = AdaLayerNormZero(dim)
self.norm1_context = AdaLayerNormZero(dim)
self.attn = Attention(
query_dim=dim,
cross_attention_dim=None,
added_kv_proj_dim=dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
context_pre_only=False,
bias=True,
processor=FluxAttnProcessor2_0(),
qk_norm=qk_norm,
eps=eps,
)
mlp_ratio = 4.0
self.mlp_hidden_dim = int(dim * mlp_ratio)
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff_context = FeedForward(
dim=dim, dim_out=dim, activation_fn="gelu-approximate"
)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
temb: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
hidden_states, emb=temb
)
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = (
self.norm1_context(encoder_hidden_states, emb=temb)
)
joint_attention_kwargs = joint_attention_kwargs or {}
# Attention.
attention_outputs = self.attn(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
image_rotary_emb=image_rotary_emb,
**joint_attention_kwargs,
)
if len(attention_outputs) == 2:
attn_output, context_attn_output = attention_outputs
elif len(attention_outputs) == 3:
attn_output, context_attn_output, ip_attn_output = attention_outputs
# Process attention outputs for the `hidden_states`.
attn_output = gate_msa.unsqueeze(1) * attn_output
hidden_states = hidden_states + attn_output
norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = (
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
)
ff_output = self.ff(norm_hidden_states)
ff_output = gate_mlp.unsqueeze(1) * ff_output
hidden_states = hidden_states + ff_output
if len(attention_outputs) == 3:
hidden_states = hidden_states + ip_attn_output
# Process attention outputs for the `encoder_hidden_states`.
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
encoder_hidden_states = encoder_hidden_states + context_attn_output
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
norm_encoder_hidden_states = (
norm_encoder_hidden_states * (1 + c_scale_mlp[:, None])
+ c_shift_mlp[:, None]
)
context_ff_output = self.ff_context(norm_encoder_hidden_states)
encoder_hidden_states = (
encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
)
if encoder_hidden_states.dtype == torch.float16:
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
return encoder_hidden_states, hidden_states