Spaces:
Running
Running
relace huggingface_hub by vllm
Browse files
app.py
CHANGED
|
@@ -1,5 +1,13 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
|
| 5 |
def respond(
|
|
@@ -12,32 +20,33 @@ def respond(
|
|
| 12 |
hf_token: gr.OAuthToken,
|
| 13 |
):
|
| 14 |
"""
|
| 15 |
-
|
| 16 |
"""
|
| 17 |
-
|
| 18 |
-
|
| 19 |
messages = [{"role": "system", "content": system_message}]
|
| 20 |
-
|
| 21 |
messages.extend(history)
|
| 22 |
-
|
| 23 |
messages.append({"role": "user", "content": message})
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
for message in client.chat_completion(
|
| 28 |
-
messages,
|
| 29 |
-
max_tokens=max_tokens,
|
| 30 |
-
stream=True,
|
| 31 |
temperature=temperature,
|
| 32 |
top_p=top_p,
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
|
|
|
| 41 |
|
| 42 |
|
| 43 |
"""
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from vllm import LLM, SamplingParams
|
| 3 |
+
|
| 4 |
+
llm = LLM(
|
| 5 |
+
model="stepfun-ai/Step-Audio-2-mini-Think", # 修改为你需要的模型
|
| 6 |
+
trust_remote_code=True,
|
| 7 |
+
tensor_parallel_size=2, # 如果有多张GPU,设置并行数量
|
| 8 |
+
# gpu_memory_utilization=0.9, # GPU显存利用率
|
| 9 |
+
max_model_len=8192,
|
| 10 |
+
)
|
| 11 |
|
| 12 |
|
| 13 |
def respond(
|
|
|
|
| 20 |
hf_token: gr.OAuthToken,
|
| 21 |
):
|
| 22 |
"""
|
| 23 |
+
使用 vllm 在本地进行推理
|
| 24 |
"""
|
| 25 |
+
# 构建对话消息
|
|
|
|
| 26 |
messages = [{"role": "system", "content": system_message}]
|
|
|
|
| 27 |
messages.extend(history)
|
|
|
|
| 28 |
messages.append({"role": "user", "content": message})
|
| 29 |
|
| 30 |
+
# 设置采样参数
|
| 31 |
+
sampling_params = SamplingParams(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
temperature=temperature,
|
| 33 |
top_p=top_p,
|
| 34 |
+
max_tokens=max_tokens,
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
# 使用 vllm 的 chat 接口进行推理
|
| 38 |
+
outputs = llm.chat(
|
| 39 |
+
messages=messages,
|
| 40 |
+
sampling_params=sampling_params,
|
| 41 |
+
use_tqdm=False,
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
# 获取生成的文本
|
| 45 |
+
response = outputs[0].outputs[0].text
|
| 46 |
|
| 47 |
+
# 模拟流式输出效果(逐字符yield)
|
| 48 |
+
for i in range(1, len(response) + 1):
|
| 49 |
+
yield response[:i]
|
| 50 |
|
| 51 |
|
| 52 |
"""
|