Spaces:
Running
Running
| import math | |
| import os | |
| import random | |
| from datetime import datetime | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| from torchvision.utils import make_grid | |
| #import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py | |
| os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" | |
| ''' | |
| # -------------------------------------------- | |
| # Kai Zhang (github: https://github.com/cszn) | |
| # 03/Mar/2019 | |
| # -------------------------------------------- | |
| # https://github.com/twhui/SRGAN-pyTorch | |
| # https://github.com/xinntao/BasicSR | |
| # -------------------------------------------- | |
| ''' | |
| IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tif'] | |
| def is_image_file(filename): | |
| return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) | |
| def get_timestamp(): | |
| return datetime.now().strftime('%y%m%d-%H%M%S') | |
| def imshow(x, title=None, cbar=False, figsize=None): | |
| plt.figure(figsize=figsize) | |
| plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray') | |
| if title: | |
| plt.title(title) | |
| if cbar: | |
| plt.colorbar() | |
| plt.show() | |
| def surf(Z, cmap='rainbow', figsize=None): | |
| plt.figure(figsize=figsize) | |
| ax3 = plt.axes(projection='3d') | |
| w, h = Z.shape[:2] | |
| xx = np.arange(0,w,1) | |
| yy = np.arange(0,h,1) | |
| X, Y = np.meshgrid(xx, yy) | |
| ax3.plot_surface(X,Y,Z,cmap=cmap) | |
| #ax3.contour(X,Y,Z, zdim='z',offset=-2,cmap=cmap) | |
| plt.show() | |
| ''' | |
| # -------------------------------------------- | |
| # get image pathes | |
| # -------------------------------------------- | |
| ''' | |
| def get_image_paths(dataroot): | |
| paths = None # return None if dataroot is None | |
| if dataroot is not None: | |
| paths = sorted(_get_paths_from_images(dataroot)) | |
| return paths | |
| def _get_paths_from_images(path): | |
| assert os.path.isdir(path), '{:s} is not a valid directory'.format(path) | |
| images = [] | |
| for dirpath, _, fnames in sorted(os.walk(path)): | |
| for fname in sorted(fnames): | |
| if is_image_file(fname): | |
| img_path = os.path.join(dirpath, fname) | |
| images.append(img_path) | |
| assert images, '{:s} has no valid image file'.format(path) | |
| return images | |
| ''' | |
| # -------------------------------------------- | |
| # split large images into small images | |
| # -------------------------------------------- | |
| ''' | |
| def patches_from_image(img, p_size=512, p_overlap=64, p_max=800): | |
| w, h = img.shape[:2] | |
| patches = [] | |
| if w > p_max and h > p_max: | |
| w1 = list(np.arange(0, w-p_size, p_size-p_overlap, dtype=np.int)) | |
| h1 = list(np.arange(0, h-p_size, p_size-p_overlap, dtype=np.int)) | |
| w1.append(w-p_size) | |
| h1.append(h-p_size) | |
| # print(w1) | |
| # print(h1) | |
| for i in w1: | |
| for j in h1: | |
| patches.append(img[i:i+p_size, j:j+p_size,:]) | |
| else: | |
| patches.append(img) | |
| return patches | |
| def imssave(imgs, img_path): | |
| """ | |
| imgs: list, N images of size WxHxC | |
| """ | |
| img_name, ext = os.path.splitext(os.path.basename(img_path)) | |
| for i, img in enumerate(imgs): | |
| if img.ndim == 3: | |
| img = img[:, :, [2, 1, 0]] | |
| new_path = os.path.join(os.path.dirname(img_path), img_name+str('_s{:04d}'.format(i))+'.png') | |
| cv2.imwrite(new_path, img) | |
| def split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=800, p_overlap=96, p_max=1000): | |
| """ | |
| split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size), | |
| and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max) | |
| will be splitted. | |
| Args: | |
| original_dataroot: | |
| taget_dataroot: | |
| p_size: size of small images | |
| p_overlap: patch size in training is a good choice | |
| p_max: images with smaller size than (p_max)x(p_max) keep unchanged. | |
| """ | |
| paths = get_image_paths(original_dataroot) | |
| for img_path in paths: | |
| # img_name, ext = os.path.splitext(os.path.basename(img_path)) | |
| img = imread_uint(img_path, n_channels=n_channels) | |
| patches = patches_from_image(img, p_size, p_overlap, p_max) | |
| imssave(patches, os.path.join(taget_dataroot,os.path.basename(img_path))) | |
| #if original_dataroot == taget_dataroot: | |
| #del img_path | |
| ''' | |
| # -------------------------------------------- | |
| # makedir | |
| # -------------------------------------------- | |
| ''' | |
| def mkdir(path): | |
| if not os.path.exists(path): | |
| os.makedirs(path) | |
| def mkdirs(paths): | |
| if isinstance(paths, str): | |
| mkdir(paths) | |
| else: | |
| for path in paths: | |
| mkdir(path) | |
| def mkdir_and_rename(path): | |
| if os.path.exists(path): | |
| new_name = path + '_archived_' + get_timestamp() | |
| print('Path already exists. Rename it to [{:s}]'.format(new_name)) | |
| os.rename(path, new_name) | |
| os.makedirs(path) | |
| ''' | |
| # -------------------------------------------- | |
| # read image from path | |
| # opencv is fast, but read BGR numpy image | |
| # -------------------------------------------- | |
| ''' | |
| # -------------------------------------------- | |
| # get uint8 image of size HxWxn_channles (RGB) | |
| # -------------------------------------------- | |
| def imread_uint(path, n_channels=3): | |
| # input: path | |
| # output: HxWx3(RGB or GGG), or HxWx1 (G) | |
| if n_channels == 1: | |
| img = cv2.imread(path, 0) # cv2.IMREAD_GRAYSCALE | |
| img = np.expand_dims(img, axis=2) # HxWx1 | |
| elif n_channels == 3: | |
| img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # BGR or G | |
| if img.ndim == 2: | |
| img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # GGG | |
| else: | |
| img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # RGB | |
| return img | |
| # -------------------------------------------- | |
| # matlab's imwrite | |
| # -------------------------------------------- | |
| def imsave(img, img_path): | |
| img = np.squeeze(img) | |
| if img.ndim == 3: | |
| img = img[:, :, [2, 1, 0]] | |
| cv2.imwrite(img_path, img) | |
| def imwrite(img, img_path): | |
| img = np.squeeze(img) | |
| if img.ndim == 3: | |
| img = img[:, :, [2, 1, 0]] | |
| cv2.imwrite(img_path, img) | |
| # -------------------------------------------- | |
| # get single image of size HxWxn_channles (BGR) | |
| # -------------------------------------------- | |
| def read_img(path): | |
| # read image by cv2 | |
| # return: Numpy float32, HWC, BGR, [0,1] | |
| img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # cv2.IMREAD_GRAYSCALE | |
| img = img.astype(np.float32) / 255. | |
| if img.ndim == 2: | |
| img = np.expand_dims(img, axis=2) | |
| # some images have 4 channels | |
| if img.shape[2] > 3: | |
| img = img[:, :, :3] | |
| return img | |
| ''' | |
| # -------------------------------------------- | |
| # image format conversion | |
| # -------------------------------------------- | |
| # numpy(single) <---> numpy(unit) | |
| # numpy(single) <---> tensor | |
| # numpy(unit) <---> tensor | |
| # -------------------------------------------- | |
| ''' | |
| # -------------------------------------------- | |
| # numpy(single) [0, 1] <---> numpy(unit) | |
| # -------------------------------------------- | |
| def uint2single(img): | |
| return np.float32(img/255.) | |
| def single2uint(img): | |
| return np.uint8((img.clip(0, 1)*255.).round()) | |
| def uint162single(img): | |
| return np.float32(img/65535.) | |
| def single2uint16(img): | |
| return np.uint16((img.clip(0, 1)*65535.).round()) | |
| # -------------------------------------------- | |
| # numpy(unit) (HxWxC or HxW) <---> tensor | |
| # -------------------------------------------- | |
| # convert uint to 4-dimensional torch tensor | |
| def uint2tensor4(img): | |
| if img.ndim == 2: | |
| img = np.expand_dims(img, axis=2) | |
| return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0) | |
| # convert uint to 3-dimensional torch tensor | |
| def uint2tensor3(img): | |
| if img.ndim == 2: | |
| img = np.expand_dims(img, axis=2) | |
| return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.) | |
| # convert 2/3/4-dimensional torch tensor to uint | |
| def tensor2uint(img): | |
| img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy() | |
| if img.ndim == 3: | |
| img = np.transpose(img, (1, 2, 0)) | |
| return np.uint8((img*255.0).round()) | |
| # -------------------------------------------- | |
| # numpy(single) (HxWxC) <---> tensor | |
| # -------------------------------------------- | |
| # convert single (HxWxC) to 3-dimensional torch tensor | |
| def single2tensor3(img): | |
| return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float() | |
| # convert single (HxWxC) to 4-dimensional torch tensor | |
| def single2tensor4(img): | |
| return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().unsqueeze(0) | |
| # convert torch tensor to single | |
| def tensor2single(img): | |
| img = img.data.squeeze().float().cpu().numpy() | |
| if img.ndim == 3: | |
| img = np.transpose(img, (1, 2, 0)) | |
| return img | |
| # convert torch tensor to single | |
| def tensor2single3(img): | |
| img = img.data.squeeze().float().cpu().numpy() | |
| if img.ndim == 3: | |
| img = np.transpose(img, (1, 2, 0)) | |
| elif img.ndim == 2: | |
| img = np.expand_dims(img, axis=2) | |
| return img | |
| def single2tensor5(img): | |
| return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float().unsqueeze(0) | |
| def single32tensor5(img): | |
| return torch.from_numpy(np.ascontiguousarray(img)).float().unsqueeze(0).unsqueeze(0) | |
| def single42tensor4(img): | |
| return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float() | |
| # from skimage.io import imread, imsave | |
| def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)): | |
| ''' | |
| Converts a torch Tensor into an image Numpy array of BGR channel order | |
| Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order | |
| Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default) | |
| ''' | |
| tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # squeeze first, then clamp | |
| tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1] | |
| n_dim = tensor.dim() | |
| if n_dim == 4: | |
| n_img = len(tensor) | |
| img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy() | |
| img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR | |
| elif n_dim == 3: | |
| img_np = tensor.numpy() | |
| img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR | |
| elif n_dim == 2: | |
| img_np = tensor.numpy() | |
| else: | |
| raise TypeError( | |
| 'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim)) | |
| if out_type == np.uint8: | |
| img_np = (img_np * 255.0).round() | |
| # Important. Unlike matlab, numpy.unit8() WILL NOT round by default. | |
| return img_np.astype(out_type) | |
| ''' | |
| # -------------------------------------------- | |
| # Augmentation, flipe and/or rotate | |
| # -------------------------------------------- | |
| # The following two are enough. | |
| # (1) augmet_img: numpy image of WxHxC or WxH | |
| # (2) augment_img_tensor4: tensor image 1xCxWxH | |
| # -------------------------------------------- | |
| ''' | |
| def augment_img(img, mode=0): | |
| '''Kai Zhang (github: https://github.com/cszn) | |
| ''' | |
| if mode == 0: | |
| return img | |
| elif mode == 1: | |
| return np.flipud(np.rot90(img)) | |
| elif mode == 2: | |
| return np.flipud(img) | |
| elif mode == 3: | |
| return np.rot90(img, k=3) | |
| elif mode == 4: | |
| return np.flipud(np.rot90(img, k=2)) | |
| elif mode == 5: | |
| return np.rot90(img) | |
| elif mode == 6: | |
| return np.rot90(img, k=2) | |
| elif mode == 7: | |
| return np.flipud(np.rot90(img, k=3)) | |
| def augment_img_tensor4(img, mode=0): | |
| '''Kai Zhang (github: https://github.com/cszn) | |
| ''' | |
| if mode == 0: | |
| return img | |
| elif mode == 1: | |
| return img.rot90(1, [2, 3]).flip([2]) | |
| elif mode == 2: | |
| return img.flip([2]) | |
| elif mode == 3: | |
| return img.rot90(3, [2, 3]) | |
| elif mode == 4: | |
| return img.rot90(2, [2, 3]).flip([2]) | |
| elif mode == 5: | |
| return img.rot90(1, [2, 3]) | |
| elif mode == 6: | |
| return img.rot90(2, [2, 3]) | |
| elif mode == 7: | |
| return img.rot90(3, [2, 3]).flip([2]) | |
| def augment_img_tensor(img, mode=0): | |
| '''Kai Zhang (github: https://github.com/cszn) | |
| ''' | |
| img_size = img.size() | |
| img_np = img.data.cpu().numpy() | |
| if len(img_size) == 3: | |
| img_np = np.transpose(img_np, (1, 2, 0)) | |
| elif len(img_size) == 4: | |
| img_np = np.transpose(img_np, (2, 3, 1, 0)) | |
| img_np = augment_img(img_np, mode=mode) | |
| img_tensor = torch.from_numpy(np.ascontiguousarray(img_np)) | |
| if len(img_size) == 3: | |
| img_tensor = img_tensor.permute(2, 0, 1) | |
| elif len(img_size) == 4: | |
| img_tensor = img_tensor.permute(3, 2, 0, 1) | |
| return img_tensor.type_as(img) | |
| def augment_img_np3(img, mode=0): | |
| if mode == 0: | |
| return img | |
| elif mode == 1: | |
| return img.transpose(1, 0, 2) | |
| elif mode == 2: | |
| return img[::-1, :, :] | |
| elif mode == 3: | |
| img = img[::-1, :, :] | |
| img = img.transpose(1, 0, 2) | |
| return img | |
| elif mode == 4: | |
| return img[:, ::-1, :] | |
| elif mode == 5: | |
| img = img[:, ::-1, :] | |
| img = img.transpose(1, 0, 2) | |
| return img | |
| elif mode == 6: | |
| img = img[:, ::-1, :] | |
| img = img[::-1, :, :] | |
| return img | |
| elif mode == 7: | |
| img = img[:, ::-1, :] | |
| img = img[::-1, :, :] | |
| img = img.transpose(1, 0, 2) | |
| return img | |
| def augment_imgs(img_list, hflip=True, rot=True): | |
| # horizontal flip OR rotate | |
| hflip = hflip and random.random() < 0.5 | |
| vflip = rot and random.random() < 0.5 | |
| rot90 = rot and random.random() < 0.5 | |
| def _augment(img): | |
| if hflip: | |
| img = img[:, ::-1, :] | |
| if vflip: | |
| img = img[::-1, :, :] | |
| if rot90: | |
| img = img.transpose(1, 0, 2) | |
| return img | |
| return [_augment(img) for img in img_list] | |
| ''' | |
| # -------------------------------------------- | |
| # modcrop and shave | |
| # -------------------------------------------- | |
| ''' | |
| def modcrop(img_in, scale): | |
| # img_in: Numpy, HWC or HW | |
| img = np.copy(img_in) | |
| if img.ndim == 2: | |
| H, W = img.shape | |
| H_r, W_r = H % scale, W % scale | |
| img = img[:H - H_r, :W - W_r] | |
| elif img.ndim == 3: | |
| H, W, C = img.shape | |
| H_r, W_r = H % scale, W % scale | |
| img = img[:H - H_r, :W - W_r, :] | |
| else: | |
| raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim)) | |
| return img | |
| def shave(img_in, border=0): | |
| # img_in: Numpy, HWC or HW | |
| img = np.copy(img_in) | |
| h, w = img.shape[:2] | |
| img = img[border:h-border, border:w-border] | |
| return img | |
| ''' | |
| # -------------------------------------------- | |
| # image processing process on numpy image | |
| # channel_convert(in_c, tar_type, img_list): | |
| # rgb2ycbcr(img, only_y=True): | |
| # bgr2ycbcr(img, only_y=True): | |
| # ycbcr2rgb(img): | |
| # -------------------------------------------- | |
| ''' | |
| def rgb2ycbcr(img, only_y=True): | |
| '''same as matlab rgb2ycbcr | |
| only_y: only return Y channel | |
| Input: | |
| uint8, [0, 255] | |
| float, [0, 1] | |
| ''' | |
| in_img_type = img.dtype | |
| img.astype(np.float32) | |
| if in_img_type != np.uint8: | |
| img *= 255. | |
| # convert | |
| if only_y: | |
| rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0 | |
| else: | |
| rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], | |
| [24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128] | |
| if in_img_type == np.uint8: | |
| rlt = rlt.round() | |
| else: | |
| rlt /= 255. | |
| return rlt.astype(in_img_type) | |
| def ycbcr2rgb(img): | |
| '''same as matlab ycbcr2rgb | |
| Input: | |
| uint8, [0, 255] | |
| float, [0, 1] | |
| ''' | |
| in_img_type = img.dtype | |
| img.astype(np.float32) | |
| if in_img_type != np.uint8: | |
| img *= 255. | |
| # convert | |
| rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071], | |
| [0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836] | |
| if in_img_type == np.uint8: | |
| rlt = rlt.round() | |
| else: | |
| rlt /= 255. | |
| return rlt.astype(in_img_type) | |
| def bgr2ycbcr(img, only_y=True): | |
| '''bgr version of rgb2ycbcr | |
| only_y: only return Y channel | |
| Input: | |
| uint8, [0, 255] | |
| float, [0, 1] | |
| ''' | |
| in_img_type = img.dtype | |
| img.astype(np.float32) | |
| if in_img_type != np.uint8: | |
| img *= 255. | |
| # convert | |
| if only_y: | |
| rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0 | |
| else: | |
| rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], | |
| [65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128] | |
| if in_img_type == np.uint8: | |
| rlt = rlt.round() | |
| else: | |
| rlt /= 255. | |
| return rlt.astype(in_img_type) | |
| def channel_convert(in_c, tar_type, img_list): | |
| # conversion among BGR, gray and y | |
| if in_c == 3 and tar_type == 'gray': # BGR to gray | |
| gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list] | |
| return [np.expand_dims(img, axis=2) for img in gray_list] | |
| elif in_c == 3 and tar_type == 'y': # BGR to y | |
| y_list = [bgr2ycbcr(img, only_y=True) for img in img_list] | |
| return [np.expand_dims(img, axis=2) for img in y_list] | |
| elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR | |
| return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list] | |
| else: | |
| return img_list | |
| ''' | |
| # -------------------------------------------- | |
| # metric, PSNR and SSIM | |
| # -------------------------------------------- | |
| ''' | |
| # -------------------------------------------- | |
| # PSNR | |
| # -------------------------------------------- | |
| def calculate_psnr(img1, img2, border=0): | |
| # img1 and img2 have range [0, 255] | |
| #img1 = img1.squeeze() | |
| #img2 = img2.squeeze() | |
| if not img1.shape == img2.shape: | |
| raise ValueError('Input images must have the same dimensions.') | |
| h, w = img1.shape[:2] | |
| img1 = img1[border:h-border, border:w-border] | |
| img2 = img2[border:h-border, border:w-border] | |
| img1 = img1.astype(np.float64) | |
| img2 = img2.astype(np.float64) | |
| mse = np.mean((img1 - img2)**2) | |
| if mse == 0: | |
| return float('inf') | |
| return 20 * math.log10(255.0 / math.sqrt(mse)) | |
| # -------------------------------------------- | |
| # SSIM | |
| # -------------------------------------------- | |
| def calculate_ssim(img1, img2, border=0): | |
| '''calculate SSIM | |
| the same outputs as MATLAB's | |
| img1, img2: [0, 255] | |
| ''' | |
| #img1 = img1.squeeze() | |
| #img2 = img2.squeeze() | |
| if not img1.shape == img2.shape: | |
| raise ValueError('Input images must have the same dimensions.') | |
| h, w = img1.shape[:2] | |
| img1 = img1[border:h-border, border:w-border] | |
| img2 = img2[border:h-border, border:w-border] | |
| if img1.ndim == 2: | |
| return ssim(img1, img2) | |
| elif img1.ndim == 3: | |
| if img1.shape[2] == 3: | |
| ssims = [] | |
| for i in range(3): | |
| ssims.append(ssim(img1[:,:,i], img2[:,:,i])) | |
| return np.array(ssims).mean() | |
| elif img1.shape[2] == 1: | |
| return ssim(np.squeeze(img1), np.squeeze(img2)) | |
| else: | |
| raise ValueError('Wrong input image dimensions.') | |
| def ssim(img1, img2): | |
| C1 = (0.01 * 255)**2 | |
| C2 = (0.03 * 255)**2 | |
| img1 = img1.astype(np.float64) | |
| img2 = img2.astype(np.float64) | |
| kernel = cv2.getGaussianKernel(11, 1.5) | |
| window = np.outer(kernel, kernel.transpose()) | |
| mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid | |
| mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5] | |
| mu1_sq = mu1**2 | |
| mu2_sq = mu2**2 | |
| mu1_mu2 = mu1 * mu2 | |
| sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq | |
| sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq | |
| sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2 | |
| ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * | |
| (sigma1_sq + sigma2_sq + C2)) | |
| return ssim_map.mean() | |
| ''' | |
| # -------------------------------------------- | |
| # matlab's bicubic imresize (numpy and torch) [0, 1] | |
| # -------------------------------------------- | |
| ''' | |
| # matlab 'imresize' function, now only support 'bicubic' | |
| def cubic(x): | |
| absx = torch.abs(x) | |
| absx2 = absx**2 | |
| absx3 = absx**3 | |
| return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \ | |
| (-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx)) | |
| def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing): | |
| if (scale < 1) and (antialiasing): | |
| # Use a modified kernel to simultaneously interpolate and antialias- larger kernel width | |
| kernel_width = kernel_width / scale | |
| # Output-space coordinates | |
| x = torch.linspace(1, out_length, out_length) | |
| # Input-space coordinates. Calculate the inverse mapping such that 0.5 | |
| # in output space maps to 0.5 in input space, and 0.5+scale in output | |
| # space maps to 1.5 in input space. | |
| u = x / scale + 0.5 * (1 - 1 / scale) | |
| # What is the left-most pixel that can be involved in the computation? | |
| left = torch.floor(u - kernel_width / 2) | |
| # What is the maximum number of pixels that can be involved in the | |
| # computation? Note: it's OK to use an extra pixel here; if the | |
| # corresponding weights are all zero, it will be eliminated at the end | |
| # of this function. | |
| P = math.ceil(kernel_width) + 2 | |
| # The indices of the input pixels involved in computing the k-th output | |
| # pixel are in row k of the indices matrix. | |
| indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view( | |
| 1, P).expand(out_length, P) | |
| # The weights used to compute the k-th output pixel are in row k of the | |
| # weights matrix. | |
| distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices | |
| # apply cubic kernel | |
| if (scale < 1) and (antialiasing): | |
| weights = scale * cubic(distance_to_center * scale) | |
| else: | |
| weights = cubic(distance_to_center) | |
| # Normalize the weights matrix so that each row sums to 1. | |
| weights_sum = torch.sum(weights, 1).view(out_length, 1) | |
| weights = weights / weights_sum.expand(out_length, P) | |
| # If a column in weights is all zero, get rid of it. only consider the first and last column. | |
| weights_zero_tmp = torch.sum((weights == 0), 0) | |
| if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6): | |
| indices = indices.narrow(1, 1, P - 2) | |
| weights = weights.narrow(1, 1, P - 2) | |
| if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6): | |
| indices = indices.narrow(1, 0, P - 2) | |
| weights = weights.narrow(1, 0, P - 2) | |
| weights = weights.contiguous() | |
| indices = indices.contiguous() | |
| sym_len_s = -indices.min() + 1 | |
| sym_len_e = indices.max() - in_length | |
| indices = indices + sym_len_s - 1 | |
| return weights, indices, int(sym_len_s), int(sym_len_e) | |
| # -------------------------------------------- | |
| # imresize for tensor image [0, 1] | |
| # -------------------------------------------- | |
| def imresize(img, scale, antialiasing=True): | |
| # Now the scale should be the same for H and W | |
| # input: img: pytorch tensor, CHW or HW [0,1] | |
| # output: CHW or HW [0,1] w/o round | |
| need_squeeze = True if img.dim() == 2 else False | |
| if need_squeeze: | |
| img.unsqueeze_(0) | |
| in_C, in_H, in_W = img.size() | |
| out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale) | |
| kernel_width = 4 | |
| kernel = 'cubic' | |
| # Return the desired dimension order for performing the resize. The | |
| # strategy is to perform the resize first along the dimension with the | |
| # smallest scale factor. | |
| # Now we do not support this. | |
| # get weights and indices | |
| weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices( | |
| in_H, out_H, scale, kernel, kernel_width, antialiasing) | |
| weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices( | |
| in_W, out_W, scale, kernel, kernel_width, antialiasing) | |
| # process H dimension | |
| # symmetric copying | |
| img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W) | |
| img_aug.narrow(1, sym_len_Hs, in_H).copy_(img) | |
| sym_patch = img[:, :sym_len_Hs, :] | |
| inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() | |
| sym_patch_inv = sym_patch.index_select(1, inv_idx) | |
| img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv) | |
| sym_patch = img[:, -sym_len_He:, :] | |
| inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() | |
| sym_patch_inv = sym_patch.index_select(1, inv_idx) | |
| img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv) | |
| out_1 = torch.FloatTensor(in_C, out_H, in_W) | |
| kernel_width = weights_H.size(1) | |
| for i in range(out_H): | |
| idx = int(indices_H[i][0]) | |
| for j in range(out_C): | |
| out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i]) | |
| # process W dimension | |
| # symmetric copying | |
| out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We) | |
| out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1) | |
| sym_patch = out_1[:, :, :sym_len_Ws] | |
| inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() | |
| sym_patch_inv = sym_patch.index_select(2, inv_idx) | |
| out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv) | |
| sym_patch = out_1[:, :, -sym_len_We:] | |
| inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() | |
| sym_patch_inv = sym_patch.index_select(2, inv_idx) | |
| out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv) | |
| out_2 = torch.FloatTensor(in_C, out_H, out_W) | |
| kernel_width = weights_W.size(1) | |
| for i in range(out_W): | |
| idx = int(indices_W[i][0]) | |
| for j in range(out_C): | |
| out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_W[i]) | |
| if need_squeeze: | |
| out_2.squeeze_() | |
| return out_2 | |
| # -------------------------------------------- | |
| # imresize for numpy image [0, 1] | |
| # -------------------------------------------- | |
| def imresize_np(img, scale, antialiasing=True): | |
| # Now the scale should be the same for H and W | |
| # input: img: Numpy, HWC or HW [0,1] | |
| # output: HWC or HW [0,1] w/o round | |
| img = torch.from_numpy(img) | |
| need_squeeze = True if img.dim() == 2 else False | |
| if need_squeeze: | |
| img.unsqueeze_(2) | |
| in_H, in_W, in_C = img.size() | |
| out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale) | |
| kernel_width = 4 | |
| kernel = 'cubic' | |
| # Return the desired dimension order for performing the resize. The | |
| # strategy is to perform the resize first along the dimension with the | |
| # smallest scale factor. | |
| # Now we do not support this. | |
| # get weights and indices | |
| weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices( | |
| in_H, out_H, scale, kernel, kernel_width, antialiasing) | |
| weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices( | |
| in_W, out_W, scale, kernel, kernel_width, antialiasing) | |
| # process H dimension | |
| # symmetric copying | |
| img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C) | |
| img_aug.narrow(0, sym_len_Hs, in_H).copy_(img) | |
| sym_patch = img[:sym_len_Hs, :, :] | |
| inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() | |
| sym_patch_inv = sym_patch.index_select(0, inv_idx) | |
| img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv) | |
| sym_patch = img[-sym_len_He:, :, :] | |
| inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() | |
| sym_patch_inv = sym_patch.index_select(0, inv_idx) | |
| img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv) | |
| out_1 = torch.FloatTensor(out_H, in_W, in_C) | |
| kernel_width = weights_H.size(1) | |
| for i in range(out_H): | |
| idx = int(indices_H[i][0]) | |
| for j in range(out_C): | |
| out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i]) | |
| # process W dimension | |
| # symmetric copying | |
| out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C) | |
| out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1) | |
| sym_patch = out_1[:, :sym_len_Ws, :] | |
| inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() | |
| sym_patch_inv = sym_patch.index_select(1, inv_idx) | |
| out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv) | |
| sym_patch = out_1[:, -sym_len_We:, :] | |
| inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() | |
| sym_patch_inv = sym_patch.index_select(1, inv_idx) | |
| out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv) | |
| out_2 = torch.FloatTensor(out_H, out_W, in_C) | |
| kernel_width = weights_W.size(1) | |
| for i in range(out_W): | |
| idx = int(indices_W[i][0]) | |
| for j in range(out_C): | |
| out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i]) | |
| if need_squeeze: | |
| out_2.squeeze_() | |
| return out_2.numpy() | |
| if __name__ == '__main__': | |
| print('---') | |
| # img = imread_uint('test.bmp', 3) | |
| # img = uint2single(img) | |
| # img_bicubic = imresize_np(img, 1/4) |