XFluxSpace / src /flux /util.py
stazizov's picture
init
e5e58b2
import os
from dataclasses import dataclass
import torch
import json
import cv2
import numpy as np
from PIL import Image
from huggingface_hub import hf_hub_download
from safetensors import safe_open
from safetensors.torch import load_file as load_sft
from optimum.quanto import requantize
from .model import Flux, FluxParams
from .controlnet import ControlNetFlux
from .modules.autoencoder import AutoEncoder, AutoEncoderParams
from .modules.conditioner import HFEmbedder
from .annotator.dwpose import DWposeDetector
from .annotator.mlsd import MLSDdetector
from .annotator.canny import CannyDetector
from .annotator.midas import MidasDetector
from .annotator.hed import HEDdetector
from .annotator.tile import TileDetector
from .annotator.zoe import ZoeDetector
def load_safetensors(path):
tensors = {}
with safe_open(path, framework="pt", device="cpu") as f:
for key in f.keys():
tensors[key] = f.get_tensor(key)
return tensors
def get_lora_rank(checkpoint):
for k in checkpoint.keys():
if k.endswith(".down.weight"):
return checkpoint[k].shape[0]
def load_checkpoint(local_path, repo_id, name):
if local_path is not None:
if '.safetensors' in local_path:
print(f"Loading .safetensors checkpoint from {local_path}")
checkpoint = load_safetensors(local_path)
else:
print(f"Loading checkpoint from {local_path}")
checkpoint = torch.load(local_path, map_location='cpu')
elif repo_id is not None and name is not None:
print(f"Loading checkpoint {name} from repo id {repo_id}")
checkpoint = load_from_repo_id(repo_id, name)
else:
raise ValueError(
"LOADING ERROR: you must specify local_path or repo_id with name in HF to download"
)
return checkpoint
def c_crop(image):
width, height = image.size
new_size = min(width, height)
left = (width - new_size) / 2
top = (height - new_size) / 2
right = (width + new_size) / 2
bottom = (height + new_size) / 2
return image.crop((left, top, right, bottom))
def pad64(x):
return int(np.ceil(float(x) / 64.0) * 64 - x)
def HWC3(x):
assert x.dtype == np.uint8
if x.ndim == 2:
x = x[:, :, None]
assert x.ndim == 3
H, W, C = x.shape
assert C == 1 or C == 3 or C == 4
if C == 3:
return x
if C == 1:
return np.concatenate([x, x, x], axis=2)
if C == 4:
color = x[:, :, 0:3].astype(np.float32)
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
y = color * alpha + 255.0 * (1.0 - alpha)
y = y.clip(0, 255).astype(np.uint8)
return y
def safer_memory(x):
# Fix many MAC/AMD problems
return np.ascontiguousarray(x.copy()).copy()
#https://github.com/Mikubill/sd-webui-controlnet/blob/main/scripts/processor.py#L17
#Added upscale_method, mode params
def resize_image_with_pad(input_image, resolution, skip_hwc3=False, mode='edge'):
if skip_hwc3:
img = input_image
else:
img = HWC3(input_image)
H_raw, W_raw, _ = img.shape
if resolution == 0:
return img, lambda x: x
k = float(resolution) / float(min(H_raw, W_raw))
H_target = int(np.round(float(H_raw) * k))
W_target = int(np.round(float(W_raw) * k))
img = cv2.resize(img, (W_target, H_target), interpolation=cv2.INTER_AREA)
H_pad, W_pad = pad64(H_target), pad64(W_target)
img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode=mode)
def remove_pad(x):
return safer_memory(x[:H_target, :W_target, ...])
return safer_memory(img_padded), remove_pad
class Annotator:
def __init__(self, name: str, device: str):
if name == "canny":
processor = CannyDetector()
elif name == "openpose":
processor = DWposeDetector(device)
elif name == "depth":
processor = MidasDetector()
elif name == "hed":
processor = HEDdetector()
elif name == "hough":
processor = MLSDdetector()
elif name == "tile":
processor = TileDetector()
elif name == "zoe":
processor = ZoeDetector()
self.name = name
self.processor = processor
def __call__(self, image: Image, width: int, height: int):
image = np.array(image)
detect_resolution = max(width, height)
image, remove_pad = resize_image_with_pad(image, detect_resolution)
image = np.array(image)
if self.name == "canny":
result = self.processor(image, low_threshold=100, high_threshold=200)
elif self.name == "hough":
result = self.processor(image, thr_v=0.05, thr_d=5)
elif self.name == "depth":
result = self.processor(image)
result, _ = result
else:
result = self.processor(image)
result = HWC3(remove_pad(result))
result = cv2.resize(result, (width, height))
return result
@dataclass
class ModelSpec:
params: FluxParams
ae_params: AutoEncoderParams
ckpt_path: str | None
ae_path: str | None
repo_id: str | None
repo_flow: str | None
repo_ae: str | None
repo_id_ae: str | None
configs = {
"flux-dev": ModelSpec(
repo_id="black-forest-labs/FLUX.1-dev",
repo_id_ae="black-forest-labs/FLUX.1-dev",
repo_flow="flux1-dev.safetensors",
repo_ae="ae.safetensors",
ckpt_path=os.getenv("FLUX_DEV"),
params=FluxParams(
in_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=True,
),
ae_path=os.getenv("AE"),
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
"flux-dev-fp8": ModelSpec(
repo_id="XLabs-AI/flux-dev-fp8",
repo_id_ae="black-forest-labs/FLUX.1-dev",
repo_flow="flux-dev-fp8.safetensors",
repo_ae="ae.safetensors",
ckpt_path=os.getenv("FLUX_DEV_FP8"),
params=FluxParams(
in_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=True,
),
ae_path=os.getenv("AE"),
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
"flux-schnell": ModelSpec(
repo_id="black-forest-labs/FLUX.1-schnell",
repo_id_ae="black-forest-labs/FLUX.1-dev",
repo_flow="flux1-schnell.safetensors",
repo_ae="ae.safetensors",
ckpt_path=os.getenv("FLUX_SCHNELL"),
params=FluxParams(
in_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=False,
),
ae_path=os.getenv("AE"),
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
}
def print_load_warning(missing: list[str], unexpected: list[str]) -> None:
if len(missing) > 0 and len(unexpected) > 0:
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
print("\n" + "-" * 79 + "\n")
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
elif len(missing) > 0:
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
elif len(unexpected) > 0:
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
def load_from_repo_id(repo_id, checkpoint_name):
ckpt_path = hf_hub_download(repo_id, checkpoint_name)
sd = load_sft(ckpt_path, device='cpu')
return sd
def load_flow_model(name: str, device: str | torch.device = "cuda", hf_download: bool = True):
# Loading Flux
print("Init model")
ckpt_path = configs[name].ckpt_path
if (
ckpt_path is None
and configs[name].repo_id is not None
and configs[name].repo_flow is not None
and hf_download
):
ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_flow)
with torch.device("meta" if ckpt_path is not None else device):
model = Flux(configs[name].params).to(torch.bfloat16)
if ckpt_path is not None:
print("Loading checkpoint")
# load_sft doesn't support torch.device
sd = load_sft(ckpt_path, device=str(device))
missing, unexpected = model.load_state_dict(sd, strict=False, assign=True)
print_load_warning(missing, unexpected)
return model
def load_flow_model2(name: str, device: str | torch.device = "cuda", hf_download: bool = True):
# Loading Flux
print("Init model")
ckpt_path = configs[name].ckpt_path
if (
ckpt_path is None
and configs[name].repo_id is not None
and configs[name].repo_flow is not None
and hf_download
):
ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_flow.replace("sft", "safetensors"))
with torch.device("meta" if ckpt_path is not None else device):
model = Flux(configs[name].params)
if ckpt_path is not None:
print("Loading checkpoint")
# load_sft doesn't support torch.device
sd = load_sft(ckpt_path, device=str(device))
missing, unexpected = model.load_state_dict(sd, strict=False, assign=True)
print_load_warning(missing, unexpected)
return model
def load_flow_model_quintized(name: str, device: str | torch.device = "cuda", hf_download: bool = True):
# Loading Flux
print("Init model")
ckpt_path = configs[name].ckpt_path
if (
ckpt_path is None
and configs[name].repo_id is not None
and configs[name].repo_flow is not None
and hf_download
):
ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_flow)
json_path = hf_hub_download(configs[name].repo_id, 'flux_dev_quantization_map.json')
model = Flux(configs[name].params).to(torch.bfloat16)
print("Loading checkpoint")
# load_sft doesn't support torch.device
sd = load_sft(ckpt_path, device='cpu')
with open(json_path, "r") as f:
quantization_map = json.load(f)
print("Start a quantization process...")
requantize(model, sd, quantization_map, device=device)
print("Model is quantized!")
return model
def load_controlnet(name, device, transformer=None):
with torch.device(device):
controlnet = ControlNetFlux(configs[name].params)
if transformer is not None:
controlnet.load_state_dict(transformer.state_dict(), strict=False)
return controlnet
def load_t5(device: str | torch.device = "cuda", max_length: int = 512) -> HFEmbedder:
# max length 64, 128, 256 and 512 should work (if your sequence is short enough)
return HFEmbedder("xlabs-ai/xflux_text_encoders", max_length=max_length, torch_dtype=torch.bfloat16).to(device)
def load_clip(device: str | torch.device = "cuda") -> HFEmbedder:
return HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to(device)
def load_ae(name: str, device: str | torch.device = "cuda", hf_download: bool = True) -> AutoEncoder:
ckpt_path = configs[name].ae_path
if (
ckpt_path is None
and configs[name].repo_id is not None
and configs[name].repo_ae is not None
and hf_download
):
ckpt_path = hf_hub_download(configs[name].repo_id_ae, configs[name].repo_ae)
# Loading the autoencoder
print("Init AE")
with torch.device("meta" if ckpt_path is not None else device):
ae = AutoEncoder(configs[name].ae_params)
if ckpt_path is not None:
sd = load_sft(ckpt_path, device=str(device))
missing, unexpected = ae.load_state_dict(sd, strict=False, assign=True)
print_load_warning(missing, unexpected)
return ae
class WatermarkEmbedder:
def __init__(self, watermark):
self.watermark = watermark
self.num_bits = len(WATERMARK_BITS)
self.encoder = WatermarkEncoder()
self.encoder.set_watermark("bits", self.watermark)
def __call__(self, image: torch.Tensor) -> torch.Tensor:
"""
Adds a predefined watermark to the input image
Args:
image: ([N,] B, RGB, H, W) in range [-1, 1]
Returns:
same as input but watermarked
"""
image = 0.5 * image + 0.5
squeeze = len(image.shape) == 4
if squeeze:
image = image[None, ...]
n = image.shape[0]
image_np = rearrange((255 * image).detach().cpu(), "n b c h w -> (n b) h w c").numpy()[:, :, :, ::-1]
# torch (b, c, h, w) in [0, 1] -> numpy (b, h, w, c) [0, 255]
# watermarking libary expects input as cv2 BGR format
for k in range(image_np.shape[0]):
image_np[k] = self.encoder.encode(image_np[k], "dwtDct")
image = torch.from_numpy(rearrange(image_np[:, :, :, ::-1], "(n b) h w c -> n b c h w", n=n)).to(
image.device
)
image = torch.clamp(image / 255, min=0.0, max=1.0)
if squeeze:
image = image[0]
image = 2 * image - 1
return image
# A fixed 48-bit message that was choosen at random
WATERMARK_MESSAGE = 0b001010101111111010000111100111001111010100101110
# bin(x)[2:] gives bits of x as str, use int to convert them to 0/1
WATERMARK_BITS = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]]