Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
from PIL import Image | |
import os | |
from src.flux.xflux_pipeline import XFluxPipeline | |
def create_argparser(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--prompt", type=str, required=True, | |
help="The input text prompt" | |
) | |
parser.add_argument( | |
"--neg_prompt", type=str, default="", | |
help="The input text negative prompt" | |
) | |
parser.add_argument( | |
"--img_prompt", type=str, default=None, | |
help="Path to input image prompt" | |
) | |
parser.add_argument( | |
"--neg_img_prompt", type=str, default=None, | |
help="Path to input negative image prompt" | |
) | |
parser.add_argument( | |
"--ip_scale", type=float, default=1.0, | |
help="Strength of input image prompt" | |
) | |
parser.add_argument( | |
"--neg_ip_scale", type=float, default=1.0, | |
help="Strength of negative input image prompt" | |
) | |
parser.add_argument( | |
"--local_path", type=str, default=None, | |
help="Local path to the model checkpoint (Controlnet)" | |
) | |
parser.add_argument( | |
"--repo_id", type=str, default=None, | |
help="A HuggingFace repo id to download model (Controlnet)" | |
) | |
parser.add_argument( | |
"--name", type=str, default=None, | |
help="A filename to download from HuggingFace" | |
) | |
parser.add_argument( | |
"--ip_repo_id", type=str, default=None, | |
help="A HuggingFace repo id to download model (IP-Adapter)" | |
) | |
parser.add_argument( | |
"--ip_name", type=str, default=None, | |
help="A IP-Adapter filename to download from HuggingFace" | |
) | |
parser.add_argument( | |
"--ip_local_path", type=str, default=None, | |
help="Local path to the model checkpoint (IP-Adapter)" | |
) | |
parser.add_argument( | |
"--lora_repo_id", type=str, default=None, | |
help="A HuggingFace repo id to download model (LoRA)" | |
) | |
parser.add_argument( | |
"--lora_name", type=str, default=None, | |
help="A LoRA filename to download from HuggingFace" | |
) | |
parser.add_argument( | |
"--lora_local_path", type=str, default=None, | |
help="Local path to the model checkpoint (Controlnet)" | |
) | |
parser.add_argument( | |
"--device", type=str, default="cuda", | |
help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)" | |
) | |
parser.add_argument( | |
"--offload", action='store_true', help="Offload model to CPU when not in use" | |
) | |
parser.add_argument( | |
"--use_ip", action='store_true', help="Load IP model" | |
) | |
parser.add_argument( | |
"--use_lora", action='store_true', help="Load Lora model" | |
) | |
parser.add_argument( | |
"--use_controlnet", action='store_true', help="Load Controlnet model" | |
) | |
parser.add_argument( | |
"--num_images_per_prompt", type=int, default=1, | |
help="The number of images to generate per prompt" | |
) | |
parser.add_argument( | |
"--image", type=str, default=None, help="Path to image" | |
) | |
parser.add_argument( | |
"--lora_weight", type=float, default=0.9, help="Lora model strength (from 0 to 1.0)" | |
) | |
parser.add_argument( | |
"--control_weight", type=float, default=0.8, help="Controlnet model strength (from 0 to 1.0)" | |
) | |
parser.add_argument( | |
"--control_type", type=str, default="canny", | |
choices=("canny", "openpose", "depth", "zoe", "hed", "hough", "tile"), | |
help="Name of controlnet condition, example: canny" | |
) | |
parser.add_argument( | |
"--model_type", type=str, default="flux-dev", | |
choices=("flux-dev", "flux-dev-fp8", "flux-schnell"), | |
help="Model type to use (flux-dev, flux-dev-fp8, flux-schnell)" | |
) | |
parser.add_argument( | |
"--width", type=int, default=1024, help="The width for generated image" | |
) | |
parser.add_argument( | |
"--height", type=int, default=1024, help="The height for generated image" | |
) | |
parser.add_argument( | |
"--num_steps", type=int, default=25, help="The num_steps for diffusion process" | |
) | |
parser.add_argument( | |
"--guidance", type=float, default=4, help="The guidance for diffusion process" | |
) | |
parser.add_argument( | |
"--seed", type=int, default=123456789, help="A seed for reproducible inference" | |
) | |
parser.add_argument( | |
"--true_gs", type=float, default=3.5, help="true guidance" | |
) | |
parser.add_argument( | |
"--timestep_to_start_cfg", type=int, default=5, help="timestep to start true guidance" | |
) | |
parser.add_argument( | |
"--save_path", type=str, default='results', help="Path to save" | |
) | |
return parser | |
def main(args): | |
if args.image: | |
image = Image.open(args.image) | |
else: | |
image = None | |
xflux_pipeline = XFluxPipeline(args.model_type, args.device, args.offload) | |
if args.use_ip: | |
print('load ip-adapter:', args.ip_local_path, args.ip_repo_id, args.ip_name) | |
xflux_pipeline.set_ip(args.ip_local_path, args.ip_repo_id, args.ip_name) | |
if args.use_lora: | |
print('load lora:', args.lora_local_path, args.lora_repo_id, args.lora_name) | |
xflux_pipeline.set_lora(args.lora_local_path, args.lora_repo_id, args.lora_name, args.lora_weight) | |
if args.use_controlnet: | |
print('load controlnet:', args.local_path, args.repo_id, args.name) | |
xflux_pipeline.set_controlnet(args.control_type, args.local_path, args.repo_id, args.name) | |
image_prompt = Image.open(args.img_prompt) if args.img_prompt else None | |
neg_image_prompt = Image.open(args.neg_img_prompt) if args.neg_img_prompt else None | |
for _ in range(args.num_images_per_prompt): | |
result = xflux_pipeline( | |
prompt=args.prompt, | |
controlnet_image=image, | |
width=args.width, | |
height=args.height, | |
guidance=args.guidance, | |
num_steps=args.num_steps, | |
seed=args.seed, | |
true_gs=args.true_gs, | |
control_weight=args.control_weight, | |
neg_prompt=args.neg_prompt, | |
timestep_to_start_cfg=args.timestep_to_start_cfg, | |
image_prompt=image_prompt, | |
neg_image_prompt=neg_image_prompt, | |
ip_scale=args.ip_scale, | |
neg_ip_scale=args.neg_ip_scale, | |
) | |
if not os.path.exists(args.save_path): | |
os.mkdir(args.save_path) | |
ind = len(os.listdir(args.save_path)) | |
result.save(os.path.join(args.save_path, f"result_{ind}.png")) | |
args.seed = args.seed + 1 | |
if __name__ == "__main__": | |
args = create_argparser().parse_args() | |
main(args) | |