staghado commited on
Commit
c77c587
·
1 Parent(s): 83ddc54

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +101 -0
app.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import cv2
3
+ import matplotlib.animation as animation
4
+ import matplotlib.pyplot as plt
5
+ import numpy as np
6
+ from scipy.integrate import quad_vec
7
+ from math import tau
8
+ import os
9
+
10
+ def fourier_transform_drawing(input_image, output_animation, frames, coefficients):
11
+ # Convert input_image to an OpenCV image
12
+ input_image = np.array(input_image)
13
+ img = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR)
14
+
15
+ # processing
16
+ imgray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
17
+ blurred = cv2.GaussianBlur(imgray, (7, 7), 0)
18
+
19
+ (T, thresh) = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)
20
+
21
+ contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
22
+ largest_contour_idx = np.argmax([len(c) for c in contours])
23
+ verts = [tuple(coord) for coord in contours[largest_contour_idx].squeeze()]
24
+
25
+ xs, ys = zip(*verts)
26
+ xs = np.asarray(xs) - np.mean(xs)
27
+ ys = - np.asarray(ys) + np.mean(ys)
28
+ t_list = np.linspace(0, tau, len(xs))
29
+
30
+ # Compute the Fourier coefficients
31
+ def f(t, t_list, xs, ys):
32
+ return np.interp(t, t_list, xs + 1j*ys)
33
+
34
+ def compute_cn(f, n):
35
+ coef = 1/tau*quad_vec(
36
+ lambda t: f(t, t_list, xs, ys)*np.exp(-n*t*1j),
37
+ 0,
38
+ tau,
39
+ limit=100,
40
+ full_output=False)[0]
41
+ return coef
42
+
43
+ N = coefficients
44
+ coefs = [(compute_cn(f, 0), 0)] + [(compute_cn(f, j), j) for i in range(1, N+1) for j in (i, -i)]
45
+
46
+ # animate the drawings
47
+ fig, ax = plt.subplots()
48
+ circles = [ax.plot([], [], 'b-')[0] for _ in range(-N, N+1)]
49
+ circle_lines = [ax.plot([], [], 'g-')[0] for _ in range(-N, N+1)]
50
+ drawing, = ax.plot([], [], 'r-', linewidth=2)
51
+
52
+ ax.set_xlim(-500, 500)
53
+ ax.set_ylim(-500, 500)
54
+ ax.set_axis_off()
55
+ ax.set_aspect('equal')
56
+ fig.set_size_inches(15, 15)
57
+
58
+ draw_x, draw_y = [], []
59
+
60
+ def animate(i, coefs, time):
61
+ t = time[i]
62
+ coefs = [(c * np.exp(1j*(fr * tau * t)), fr) for c, fr in coefs]
63
+ center = (0, 0)
64
+
65
+ for c, _ in coefs:
66
+ r = np.linalg.norm(c)
67
+ theta = np.linspace(0, tau, 80)
68
+ x, y = center[0] + r * np.cos(theta), center[1] + r * np.sin(theta)
69
+ circle_lines[_].set_data([center[0], center[0]+np.real(c)], [center[1], center[1]+np.imag(c)])
70
+ circles[_].set_data(x, y)
71
+ center = (center[0] + np.real(c), center[1] + np.imag(c))
72
+
73
+ draw_x.append(center[0])
74
+ draw_y.append(center[1])
75
+ drawing.set_data(draw_x, draw_y)
76
+
77
+ drawing_time = 1
78
+ time = np.linspace(0, drawing_time, num=frames)
79
+ anim = animation.FuncAnimation(fig, animate, frames=frames, interval=5, fargs=(coefs, time))
80
+
81
+ anim.save(output_animation, fps=15)
82
+ plt.close(fig)
83
+
84
+ return output_animation
85
+
86
+ # Gradio interface
87
+ interface = gr.Interface(
88
+ fn=fourier_transform_drawing,
89
+ inputs=[
90
+ gr.inputs.Image(label="Input Image"),
91
+ gr.inputs.Textbox(default="output.mp4", label="Output Animation Path"),
92
+ gr.inputs.Slider(minimum=10, maximum=500, default=300, label="Number of Frames"),
93
+ gr.inputs.Slider(minimum=10, maximum=500, default=300, label="Number of Coefficients")
94
+ ],
95
+ outputs="file",
96
+ title="Fourier Transform Drawing",
97
+ description="Upload an image and generate a Fourier Transform drawing animation."
98
+ )
99
+
100
+ if __name__ == "__main__":
101
+ interface.launch()