Spaces:
Running
Running
import torch | |
from ram import get_transform, inference_ram, inference_tag2text | |
from ram.models import ram, tag2text_caption | |
ram_checkpoint = "./ram_swin_large_14m.pth" | |
tag2text_checkpoint = "./tag2text_swin_14m.pth" | |
image_size = 384 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
def inference(raw_image, specified_tags, tagging_model_type, tagging_model, transform): | |
print(f"Start processing, image size {raw_image.size}") | |
image = transform(raw_image).unsqueeze(0).to(device) | |
if tagging_model_type == "RAM": | |
res = inference_ram(image, tagging_model) | |
tags = res[0].strip(' ').replace(' ', ' ') | |
tags_chinese = res[1].strip(' ').replace(' ', ' ') | |
print("Tags: ", tags) | |
print("标签: ", tags_chinese) | |
return tags, tags_chinese | |
else: | |
res = inference_tag2text(image, tagging_model, specified_tags) | |
tags = res[0].strip(' ').replace(' ', ' ') | |
caption = res[2] | |
print(f"Tags: {tags}") | |
print(f"Caption: {caption}") | |
return tags, caption | |
def inference_with_ram(img): | |
return inference(img, None, "RAM", ram_model, transform) | |
def inference_with_t2t(img, input_tags): | |
return inference(img, input_tags, "Tag2Text", tag2text_model, transform) | |
if __name__ == "__main__": | |
import gradio as gr | |
# get transform and load models | |
transform = get_transform(image_size=image_size) | |
ram_model = ram(pretrained=ram_checkpoint, image_size=image_size, vit='swin_l').eval().to(device) | |
tag2text_model = tag2text_caption( | |
pretrained=tag2text_checkpoint, image_size=image_size, vit='swin_b').eval().to(device) | |
# build GUI | |
def build_gui(): | |
description = """ | |
<center><strong><font size='10'>Recognize Anything Model</font></strong></center> | |
<br> | |
<p>Welcome to the <a href='https://recognize-anything.github.io/' target='_blank'>Recognize Anything Model</a> / <a href='https://tag2text.github.io/Tag2Text' target='_blank'>Tag2Text Model</a> demo!</p> | |
<li> | |
<b>Recognize Anything Model:</b> Upload your image to get the <b>English and Chinese tags</b>! | |
</li> | |
<li> | |
<b>Tag2Text Model:</b> Upload your image to get the <b>tags and caption</b>! (Optional: Specify tags to get the corresponding caption.) | |
</li> | |
<p><b>More over:</b> Combine with <a href='https://github.com/IDEA-Research/Grounded-Segment-Anything' target='_blank'>Grounded-SAM</a>, you can get <b>boxes and masks</b>! Please run <a href='https://github.com/xinyu1205/recognize-anything/blob/main/gui_demo.ipynb' target='_blank'>this notebook</a> to try out!</p> | |
<p>Great thanks to <a href='https://huggingface.co/majinyu' target='_blank'>Ma Jinyu</a>, the major contributor of this demo!</p> | |
""" # noqa | |
article = """ | |
<p style='text-align: center'> | |
RAM and Tag2Text are trained on open-source datasets, and we are persisting in refining and iterating upon it.<br/> | |
<a href='https://recognize-anything.github.io/' target='_blank'>Recognize Anything: A Strong Image Tagging Model</a> | |
| | |
<a href='https://https://tag2text.github.io/' target='_blank'>Tag2Text: Guiding Language-Image Model via Image Tagging</a> | |
</p> | |
""" # noqa | |
with gr.Blocks(title="Recognize Anything Model") as demo: | |
############### | |
# components | |
############### | |
gr.HTML(description) | |
with gr.Tab(label="Recognize Anything Model"): | |
with gr.Row(): | |
with gr.Column(): | |
ram_in_img = gr.Image(type="pil") | |
with gr.Row(): | |
ram_btn_run = gr.Button(value="Run") | |
try: | |
ram_btn_clear = gr.ClearButton() | |
except AttributeError: # old gradio does not have ClearButton, not big problem | |
ram_btn_clear = None | |
with gr.Column(): | |
ram_out_tag = gr.Textbox(label="Tags") | |
ram_out_biaoqian = gr.Textbox(label="标签") | |
gr.Examples( | |
examples=[ | |
["images/demo1.jpg"], | |
["images/demo2.jpg"], | |
["images/demo4.jpg"], | |
], | |
fn=inference_with_ram, | |
inputs=[ram_in_img], | |
outputs=[ram_out_tag, ram_out_biaoqian], | |
cache_examples=True | |
) | |
with gr.Tab(label="Tag2Text Model"): | |
with gr.Row(): | |
with gr.Column(): | |
t2t_in_img = gr.Image(type="pil") | |
t2t_in_tag = gr.Textbox(label="User Specified Tags (Optional, separated by comma)") | |
with gr.Row(): | |
t2t_btn_run = gr.Button(value="Run") | |
try: | |
t2t_btn_clear = gr.ClearButton() | |
except AttributeError: # old gradio does not have ClearButton, not big problem | |
t2t_btn_clear = None | |
with gr.Column(): | |
t2t_out_tag = gr.Textbox(label="Tags") | |
t2t_out_cap = gr.Textbox(label="Caption") | |
gr.Examples( | |
examples=[ | |
["images/demo4.jpg", ""], | |
["images/demo4.jpg", "power line"], | |
["images/demo4.jpg", "track, train"], | |
], | |
fn=inference_with_t2t, | |
inputs=[t2t_in_img, t2t_in_tag], | |
outputs=[t2t_out_tag, t2t_out_cap], | |
cache_examples=True | |
) | |
gr.HTML(article) | |
############### | |
# events | |
############### | |
# run inference | |
ram_btn_run.click( | |
fn=inference_with_ram, | |
inputs=[ram_in_img], | |
outputs=[ram_out_tag, ram_out_biaoqian] | |
) | |
t2t_btn_run.click( | |
fn=inference_with_t2t, | |
inputs=[t2t_in_img, t2t_in_tag], | |
outputs=[t2t_out_tag, t2t_out_cap] | |
) | |
# clear | |
if ram_btn_clear is not None: | |
ram_btn_clear.add([ram_in_img, ram_out_tag, ram_out_biaoqian]) | |
if t2t_btn_clear is not None: | |
t2t_btn_clear.add([t2t_in_img, t2t_in_tag, t2t_out_tag, t2t_out_cap]) | |
return demo | |
build_gui().launch(enable_queue=True) | |