Shadhil's picture
voice-clone with single audio sample input
9b2107c
import torch
import torch.nn.functional as F
from torch import nn
# adapted from https://github.com/cvqluu/GE2E-Loss
class GE2ELoss(nn.Module):
def __init__(self, init_w=10.0, init_b=-5.0, loss_method="softmax"):
"""
Implementation of the Generalized End-to-End loss defined in https://arxiv.org/abs/1710.10467 [1]
Accepts an input of size (N, M, D)
where N is the number of speakers in the batch,
M is the number of utterances per speaker,
and D is the dimensionality of the embedding vector (e.g. d-vector)
Args:
- init_w (float): defines the initial value of w in Equation (5) of [1]
- init_b (float): definies the initial value of b in Equation (5) of [1]
"""
super().__init__()
# pylint: disable=E1102
self.w = nn.Parameter(torch.tensor(init_w))
# pylint: disable=E1102
self.b = nn.Parameter(torch.tensor(init_b))
self.loss_method = loss_method
print(" > Initialized Generalized End-to-End loss")
assert self.loss_method in ["softmax", "contrast"]
if self.loss_method == "softmax":
self.embed_loss = self.embed_loss_softmax
if self.loss_method == "contrast":
self.embed_loss = self.embed_loss_contrast
# pylint: disable=R0201
def calc_new_centroids(self, dvecs, centroids, spkr, utt):
"""
Calculates the new centroids excluding the reference utterance
"""
excl = torch.cat((dvecs[spkr, :utt], dvecs[spkr, utt + 1 :]))
excl = torch.mean(excl, 0)
new_centroids = []
for i, centroid in enumerate(centroids):
if i == spkr:
new_centroids.append(excl)
else:
new_centroids.append(centroid)
return torch.stack(new_centroids)
def calc_cosine_sim(self, dvecs, centroids):
"""
Make the cosine similarity matrix with dims (N,M,N)
"""
cos_sim_matrix = []
for spkr_idx, speaker in enumerate(dvecs):
cs_row = []
for utt_idx, utterance in enumerate(speaker):
new_centroids = self.calc_new_centroids(dvecs, centroids, spkr_idx, utt_idx)
# vector based cosine similarity for speed
cs_row.append(
torch.clamp(
torch.mm(
utterance.unsqueeze(1).transpose(0, 1),
new_centroids.transpose(0, 1),
)
/ (torch.norm(utterance) * torch.norm(new_centroids, dim=1)),
1e-6,
)
)
cs_row = torch.cat(cs_row, dim=0)
cos_sim_matrix.append(cs_row)
return torch.stack(cos_sim_matrix)
# pylint: disable=R0201
def embed_loss_softmax(self, dvecs, cos_sim_matrix):
"""
Calculates the loss on each embedding $L(e_{ji})$ by taking softmax
"""
N, M, _ = dvecs.shape
L = []
for j in range(N):
L_row = []
for i in range(M):
L_row.append(-F.log_softmax(cos_sim_matrix[j, i], 0)[j])
L_row = torch.stack(L_row)
L.append(L_row)
return torch.stack(L)
# pylint: disable=R0201
def embed_loss_contrast(self, dvecs, cos_sim_matrix):
"""
Calculates the loss on each embedding $L(e_{ji})$ by contrast loss with closest centroid
"""
N, M, _ = dvecs.shape
L = []
for j in range(N):
L_row = []
for i in range(M):
centroids_sigmoids = torch.sigmoid(cos_sim_matrix[j, i])
excl_centroids_sigmoids = torch.cat((centroids_sigmoids[:j], centroids_sigmoids[j + 1 :]))
L_row.append(1.0 - torch.sigmoid(cos_sim_matrix[j, i, j]) + torch.max(excl_centroids_sigmoids))
L_row = torch.stack(L_row)
L.append(L_row)
return torch.stack(L)
def forward(self, x, _label=None):
"""
Calculates the GE2E loss for an input of dimensions (num_speakers, num_utts_per_speaker, dvec_feats)
"""
assert x.size()[1] >= 2
centroids = torch.mean(x, 1)
cos_sim_matrix = self.calc_cosine_sim(x, centroids)
torch.clamp(self.w, 1e-6)
cos_sim_matrix = self.w * cos_sim_matrix + self.b
L = self.embed_loss(x, cos_sim_matrix)
return L.mean()
# adapted from https://github.com/clovaai/voxceleb_trainer/blob/master/loss/angleproto.py
class AngleProtoLoss(nn.Module):
"""
Implementation of the Angular Prototypical loss defined in https://arxiv.org/abs/2003.11982
Accepts an input of size (N, M, D)
where N is the number of speakers in the batch,
M is the number of utterances per speaker,
and D is the dimensionality of the embedding vector
Args:
- init_w (float): defines the initial value of w
- init_b (float): definies the initial value of b
"""
def __init__(self, init_w=10.0, init_b=-5.0):
super().__init__()
# pylint: disable=E1102
self.w = nn.Parameter(torch.tensor(init_w))
# pylint: disable=E1102
self.b = nn.Parameter(torch.tensor(init_b))
self.criterion = torch.nn.CrossEntropyLoss()
print(" > Initialized Angular Prototypical loss")
def forward(self, x, _label=None):
"""
Calculates the AngleProto loss for an input of dimensions (num_speakers, num_utts_per_speaker, dvec_feats)
"""
assert x.size()[1] >= 2
out_anchor = torch.mean(x[:, 1:, :], 1)
out_positive = x[:, 0, :]
num_speakers = out_anchor.size()[0]
cos_sim_matrix = F.cosine_similarity(
out_positive.unsqueeze(-1).expand(-1, -1, num_speakers),
out_anchor.unsqueeze(-1).expand(-1, -1, num_speakers).transpose(0, 2),
)
torch.clamp(self.w, 1e-6)
cos_sim_matrix = cos_sim_matrix * self.w + self.b
label = torch.arange(num_speakers).to(cos_sim_matrix.device)
L = self.criterion(cos_sim_matrix, label)
return L
class SoftmaxLoss(nn.Module):
"""
Implementation of the Softmax loss as defined in https://arxiv.org/abs/2003.11982
Args:
- embedding_dim (float): speaker embedding dim
- n_speakers (float): number of speakers
"""
def __init__(self, embedding_dim, n_speakers):
super().__init__()
self.criterion = torch.nn.CrossEntropyLoss()
self.fc = nn.Linear(embedding_dim, n_speakers)
print("Initialised Softmax Loss")
def forward(self, x, label=None):
# reshape for compatibility
x = x.reshape(-1, x.size()[-1])
label = label.reshape(-1)
x = self.fc(x)
L = self.criterion(x, label)
return L
def inference(self, embedding):
x = self.fc(embedding)
activations = torch.nn.functional.softmax(x, dim=1).squeeze(0)
class_id = torch.argmax(activations)
return class_id
class SoftmaxAngleProtoLoss(nn.Module):
"""
Implementation of the Softmax AnglePrototypical loss as defined in https://arxiv.org/abs/2009.14153
Args:
- embedding_dim (float): speaker embedding dim
- n_speakers (float): number of speakers
- init_w (float): defines the initial value of w
- init_b (float): definies the initial value of b
"""
def __init__(self, embedding_dim, n_speakers, init_w=10.0, init_b=-5.0):
super().__init__()
self.softmax = SoftmaxLoss(embedding_dim, n_speakers)
self.angleproto = AngleProtoLoss(init_w, init_b)
print("Initialised SoftmaxAnglePrototypical Loss")
def forward(self, x, label=None):
"""
Calculates the SoftmaxAnglePrototypical loss for an input of dimensions (num_speakers, num_utts_per_speaker, dvec_feats)
"""
Lp = self.angleproto(x)
Ls = self.softmax(x, label)
return Ls + Lp