Spaces:
Runtime error
Runtime error
| # Adopted from https://github.com/photosynthesis-team/piq | |
| from typing import List, Optional, Tuple, Union | |
| import torch | |
| import torch.nn.functional as F | |
| from torch.nn.modules.loss import _Loss | |
| def _reduce(x: torch.Tensor, reduction: str = "mean") -> torch.Tensor: | |
| r"""Reduce input in batch dimension if needed. | |
| Args: | |
| x: Tensor with shape (N, *). | |
| reduction: Specifies the reduction type: | |
| ``'none'`` | ``'mean'`` | ``'sum'``. Default: ``'mean'`` | |
| """ | |
| if reduction == "none": | |
| return x | |
| if reduction == "mean": | |
| return x.mean(dim=0) | |
| if reduction == "sum": | |
| return x.sum(dim=0) | |
| raise ValueError("Unknown reduction. Expected one of {'none', 'mean', 'sum'}") | |
| def _validate_input( | |
| tensors: List[torch.Tensor], | |
| dim_range: Tuple[int, int] = (0, -1), | |
| data_range: Tuple[float, float] = (0.0, -1.0), | |
| # size_dim_range: Tuple[float, float] = (0., -1.), | |
| size_range: Optional[Tuple[int, int]] = None, | |
| ) -> None: | |
| r"""Check that input(-s) satisfies the requirements | |
| Args: | |
| tensors: Tensors to check | |
| dim_range: Allowed number of dimensions. (min, max) | |
| data_range: Allowed range of values in tensors. (min, max) | |
| size_range: Dimensions to include in size comparison. (start_dim, end_dim + 1) | |
| """ | |
| if not __debug__: | |
| return | |
| x = tensors[0] | |
| for t in tensors: | |
| assert torch.is_tensor(t), f"Expected torch.Tensor, got {type(t)}" | |
| assert t.device == x.device, f"Expected tensors to be on {x.device}, got {t.device}" | |
| if size_range is None: | |
| assert t.size() == x.size(), f"Expected tensors with same size, got {t.size()} and {x.size()}" | |
| else: | |
| assert ( | |
| t.size()[size_range[0] : size_range[1]] == x.size()[size_range[0] : size_range[1]] | |
| ), f"Expected tensors with same size at given dimensions, got {t.size()} and {x.size()}" | |
| if dim_range[0] == dim_range[1]: | |
| assert t.dim() == dim_range[0], f"Expected number of dimensions to be {dim_range[0]}, got {t.dim()}" | |
| elif dim_range[0] < dim_range[1]: | |
| assert ( | |
| dim_range[0] <= t.dim() <= dim_range[1] | |
| ), f"Expected number of dimensions to be between {dim_range[0]} and {dim_range[1]}, got {t.dim()}" | |
| if data_range[0] < data_range[1]: | |
| assert data_range[0] <= t.min(), f"Expected values to be greater or equal to {data_range[0]}, got {t.min()}" | |
| assert t.max() <= data_range[1], f"Expected values to be lower or equal to {data_range[1]}, got {t.max()}" | |
| def gaussian_filter(kernel_size: int, sigma: float) -> torch.Tensor: | |
| r"""Returns 2D Gaussian kernel N(0,`sigma`^2) | |
| Args: | |
| size: Size of the kernel | |
| sigma: Std of the distribution | |
| Returns: | |
| gaussian_kernel: Tensor with shape (1, kernel_size, kernel_size) | |
| """ | |
| coords = torch.arange(kernel_size, dtype=torch.float32) | |
| coords -= (kernel_size - 1) / 2.0 | |
| g = coords**2 | |
| g = (-(g.unsqueeze(0) + g.unsqueeze(1)) / (2 * sigma**2)).exp() | |
| g /= g.sum() | |
| return g.unsqueeze(0) | |
| def ssim( | |
| x: torch.Tensor, | |
| y: torch.Tensor, | |
| kernel_size: int = 11, | |
| kernel_sigma: float = 1.5, | |
| data_range: Union[int, float] = 1.0, | |
| reduction: str = "mean", | |
| full: bool = False, | |
| downsample: bool = True, | |
| k1: float = 0.01, | |
| k2: float = 0.03, | |
| ) -> List[torch.Tensor]: | |
| r"""Interface of Structural Similarity (SSIM) index. | |
| Inputs supposed to be in range ``[0, data_range]``. | |
| To match performance with skimage and tensorflow set ``'downsample' = True``. | |
| Args: | |
| x: An input tensor. Shape :math:`(N, C, H, W)` or :math:`(N, C, H, W, 2)`. | |
| y: A target tensor. Shape :math:`(N, C, H, W)` or :math:`(N, C, H, W, 2)`. | |
| kernel_size: The side-length of the sliding window used in comparison. Must be an odd value. | |
| kernel_sigma: Sigma of normal distribution. | |
| data_range: Maximum value range of images (usually 1.0 or 255). | |
| reduction: Specifies the reduction type: | |
| ``'none'`` | ``'mean'`` | ``'sum'``. Default:``'mean'`` | |
| full: Return cs map or not. | |
| downsample: Perform average pool before SSIM computation. Default: True | |
| k1: Algorithm parameter, K1 (small constant). | |
| k2: Algorithm parameter, K2 (small constant). | |
| Try a larger K2 constant (e.g. 0.4) if you get a negative or NaN results. | |
| Returns: | |
| Value of Structural Similarity (SSIM) index. In case of 5D input tensors, complex value is returned | |
| as a tensor of size 2. | |
| References: | |
| Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). | |
| Image quality assessment: From error visibility to structural similarity. | |
| IEEE Transactions on Image Processing, 13, 600-612. | |
| https://ece.uwaterloo.ca/~z70wang/publications/ssim.pdf, | |
| DOI: `10.1109/TIP.2003.819861` | |
| """ | |
| assert kernel_size % 2 == 1, f"Kernel size must be odd, got [{kernel_size}]" | |
| _validate_input([x, y], dim_range=(4, 5), data_range=(0, data_range)) | |
| x = x / float(data_range) | |
| y = y / float(data_range) | |
| # Averagepool image if the size is large enough | |
| f = max(1, round(min(x.size()[-2:]) / 256)) | |
| if (f > 1) and downsample: | |
| x = F.avg_pool2d(x, kernel_size=f) | |
| y = F.avg_pool2d(y, kernel_size=f) | |
| kernel = gaussian_filter(kernel_size, kernel_sigma).repeat(x.size(1), 1, 1, 1).to(y) | |
| _compute_ssim_per_channel = _ssim_per_channel_complex if x.dim() == 5 else _ssim_per_channel | |
| ssim_map, cs_map = _compute_ssim_per_channel(x=x, y=y, kernel=kernel, k1=k1, k2=k2) | |
| ssim_val = ssim_map.mean(1) | |
| cs = cs_map.mean(1) | |
| ssim_val = _reduce(ssim_val, reduction) | |
| cs = _reduce(cs, reduction) | |
| if full: | |
| return [ssim_val, cs] | |
| return ssim_val | |
| class SSIMLoss(_Loss): | |
| r"""Creates a criterion that measures the structural similarity index error between | |
| each element in the input :math:`x` and target :math:`y`. | |
| To match performance with skimage and tensorflow set ``'downsample' = True``. | |
| The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as: | |
| .. math:: | |
| SSIM = \{ssim_1,\dots,ssim_{N \times C}\}\\ | |
| ssim_{l}(x, y) = \frac{(2 \mu_x \mu_y + c_1) (2 \sigma_{xy} + c_2)} | |
| {(\mu_x^2 +\mu_y^2 + c_1)(\sigma_x^2 +\sigma_y^2 + c_2)}, | |
| where :math:`N` is the batch size, `C` is the channel size. If :attr:`reduction` is not ``'none'`` | |
| (default ``'mean'``), then: | |
| .. math:: | |
| SSIMLoss(x, y) = | |
| \begin{cases} | |
| \operatorname{mean}(1 - SSIM), & \text{if reduction} = \text{'mean';}\\ | |
| \operatorname{sum}(1 - SSIM), & \text{if reduction} = \text{'sum'.} | |
| \end{cases} | |
| :math:`x` and :math:`y` are tensors of arbitrary shapes with a total | |
| of :math:`n` elements each. | |
| The sum operation still operates over all the elements, and divides by :math:`n`. | |
| The division by :math:`n` can be avoided if one sets ``reduction = 'sum'``. | |
| In case of 5D input tensors, complex value is returned as a tensor of size 2. | |
| Args: | |
| kernel_size: By default, the mean and covariance of a pixel is obtained | |
| by convolution with given filter_size. | |
| kernel_sigma: Standard deviation for Gaussian kernel. | |
| k1: Coefficient related to c1 in the above equation. | |
| k2: Coefficient related to c2 in the above equation. | |
| downsample: Perform average pool before SSIM computation. Default: True | |
| reduction: Specifies the reduction type: | |
| ``'none'`` | ``'mean'`` | ``'sum'``. Default:``'mean'`` | |
| data_range: Maximum value range of images (usually 1.0 or 255). | |
| Examples: | |
| >>> loss = SSIMLoss() | |
| >>> x = torch.rand(3, 3, 256, 256, requires_grad=True) | |
| >>> y = torch.rand(3, 3, 256, 256) | |
| >>> output = loss(x, y) | |
| >>> output.backward() | |
| References: | |
| Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). | |
| Image quality assessment: From error visibility to structural similarity. | |
| IEEE Transactions on Image Processing, 13, 600-612. | |
| https://ece.uwaterloo.ca/~z70wang/publications/ssim.pdf, | |
| DOI:`10.1109/TIP.2003.819861` | |
| """ | |
| __constants__ = ["kernel_size", "k1", "k2", "sigma", "kernel", "reduction"] | |
| def __init__( | |
| self, | |
| kernel_size: int = 11, | |
| kernel_sigma: float = 1.5, | |
| k1: float = 0.01, | |
| k2: float = 0.03, | |
| downsample: bool = True, | |
| reduction: str = "mean", | |
| data_range: Union[int, float] = 1.0, | |
| ) -> None: | |
| super().__init__() | |
| # Generic loss parameters. | |
| self.reduction = reduction | |
| # Loss-specific parameters. | |
| self.kernel_size = kernel_size | |
| # This check might look redundant because kernel size is checked within the ssim function anyway. | |
| # However, this check allows to fail fast when the loss is being initialised and training has not been started. | |
| assert kernel_size % 2 == 1, f"Kernel size must be odd, got [{kernel_size}]" | |
| self.kernel_sigma = kernel_sigma | |
| self.k1 = k1 | |
| self.k2 = k2 | |
| self.downsample = downsample | |
| self.data_range = data_range | |
| def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: | |
| r"""Computation of Structural Similarity (SSIM) index as a loss function. | |
| Args: | |
| x: An input tensor. Shape :math:`(N, C, H, W)` or :math:`(N, C, H, W, 2)`. | |
| y: A target tensor. Shape :math:`(N, C, H, W)` or :math:`(N, C, H, W, 2)`. | |
| Returns: | |
| Value of SSIM loss to be minimized, i.e ``1 - ssim`` in [0, 1] range. In case of 5D input tensors, | |
| complex value is returned as a tensor of size 2. | |
| """ | |
| score = ssim( | |
| x=x, | |
| y=y, | |
| kernel_size=self.kernel_size, | |
| kernel_sigma=self.kernel_sigma, | |
| downsample=self.downsample, | |
| data_range=self.data_range, | |
| reduction=self.reduction, | |
| full=False, | |
| k1=self.k1, | |
| k2=self.k2, | |
| ) | |
| return torch.ones_like(score) - score | |
| def _ssim_per_channel( | |
| x: torch.Tensor, | |
| y: torch.Tensor, | |
| kernel: torch.Tensor, | |
| k1: float = 0.01, | |
| k2: float = 0.03, | |
| ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: | |
| r"""Calculate Structural Similarity (SSIM) index for X and Y per channel. | |
| Args: | |
| x: An input tensor. Shape :math:`(N, C, H, W)`. | |
| y: A target tensor. Shape :math:`(N, C, H, W)`. | |
| kernel: 2D Gaussian kernel. | |
| k1: Algorithm parameter, K1 (small constant, see [1]). | |
| k2: Algorithm parameter, K2 (small constant, see [1]). | |
| Try a larger K2 constant (e.g. 0.4) if you get a negative or NaN results. | |
| Returns: | |
| Full Value of Structural Similarity (SSIM) index. | |
| """ | |
| if x.size(-1) < kernel.size(-1) or x.size(-2) < kernel.size(-2): | |
| raise ValueError( | |
| f"Kernel size can't be greater than actual input size. Input size: {x.size()}. " | |
| f"Kernel size: {kernel.size()}" | |
| ) | |
| c1 = k1**2 | |
| c2 = k2**2 | |
| n_channels = x.size(1) | |
| mu_x = F.conv2d(x, weight=kernel, stride=1, padding=0, groups=n_channels) | |
| mu_y = F.conv2d(y, weight=kernel, stride=1, padding=0, groups=n_channels) | |
| mu_xx = mu_x**2 | |
| mu_yy = mu_y**2 | |
| mu_xy = mu_x * mu_y | |
| sigma_xx = F.conv2d(x**2, weight=kernel, stride=1, padding=0, groups=n_channels) - mu_xx | |
| sigma_yy = F.conv2d(y**2, weight=kernel, stride=1, padding=0, groups=n_channels) - mu_yy | |
| sigma_xy = F.conv2d(x * y, weight=kernel, stride=1, padding=0, groups=n_channels) - mu_xy | |
| # Contrast sensitivity (CS) with alpha = beta = gamma = 1. | |
| cs = (2.0 * sigma_xy + c2) / (sigma_xx + sigma_yy + c2) | |
| # Structural similarity (SSIM) | |
| ss = (2.0 * mu_xy + c1) / (mu_xx + mu_yy + c1) * cs | |
| ssim_val = ss.mean(dim=(-1, -2)) | |
| cs = cs.mean(dim=(-1, -2)) | |
| return ssim_val, cs | |
| def _ssim_per_channel_complex( | |
| x: torch.Tensor, | |
| y: torch.Tensor, | |
| kernel: torch.Tensor, | |
| k1: float = 0.01, | |
| k2: float = 0.03, | |
| ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: | |
| r"""Calculate Structural Similarity (SSIM) index for Complex X and Y per channel. | |
| Args: | |
| x: An input tensor. Shape :math:`(N, C, H, W, 2)`. | |
| y: A target tensor. Shape :math:`(N, C, H, W, 2)`. | |
| kernel: 2-D gauss kernel. | |
| k1: Algorithm parameter, K1 (small constant, see [1]). | |
| k2: Algorithm parameter, K2 (small constant, see [1]). | |
| Try a larger K2 constant (e.g. 0.4) if you get a negative or NaN results. | |
| Returns: | |
| Full Value of Complex Structural Similarity (SSIM) index. | |
| """ | |
| n_channels = x.size(1) | |
| if x.size(-2) < kernel.size(-1) or x.size(-3) < kernel.size(-2): | |
| raise ValueError( | |
| f"Kernel size can't be greater than actual input size. Input size: {x.size()}. " | |
| f"Kernel size: {kernel.size()}" | |
| ) | |
| c1 = k1**2 | |
| c2 = k2**2 | |
| x_real = x[..., 0] | |
| x_imag = x[..., 1] | |
| y_real = y[..., 0] | |
| y_imag = y[..., 1] | |
| mu1_real = F.conv2d(x_real, weight=kernel, stride=1, padding=0, groups=n_channels) | |
| mu1_imag = F.conv2d(x_imag, weight=kernel, stride=1, padding=0, groups=n_channels) | |
| mu2_real = F.conv2d(y_real, weight=kernel, stride=1, padding=0, groups=n_channels) | |
| mu2_imag = F.conv2d(y_imag, weight=kernel, stride=1, padding=0, groups=n_channels) | |
| mu1_sq = mu1_real.pow(2) + mu1_imag.pow(2) | |
| mu2_sq = mu2_real.pow(2) + mu2_imag.pow(2) | |
| mu1_mu2_real = mu1_real * mu2_real - mu1_imag * mu2_imag | |
| mu1_mu2_imag = mu1_real * mu2_imag + mu1_imag * mu2_real | |
| compensation = 1.0 | |
| x_sq = x_real.pow(2) + x_imag.pow(2) | |
| y_sq = y_real.pow(2) + y_imag.pow(2) | |
| x_y_real = x_real * y_real - x_imag * y_imag | |
| x_y_imag = x_real * y_imag + x_imag * y_real | |
| sigma1_sq = F.conv2d(x_sq, weight=kernel, stride=1, padding=0, groups=n_channels) - mu1_sq | |
| sigma2_sq = F.conv2d(y_sq, weight=kernel, stride=1, padding=0, groups=n_channels) - mu2_sq | |
| sigma12_real = F.conv2d(x_y_real, weight=kernel, stride=1, padding=0, groups=n_channels) - mu1_mu2_real | |
| sigma12_imag = F.conv2d(x_y_imag, weight=kernel, stride=1, padding=0, groups=n_channels) - mu1_mu2_imag | |
| sigma12 = torch.stack((sigma12_imag, sigma12_real), dim=-1) | |
| mu1_mu2 = torch.stack((mu1_mu2_real, mu1_mu2_imag), dim=-1) | |
| # Set alpha = beta = gamma = 1. | |
| cs_map = (sigma12 * 2 + c2 * compensation) / (sigma1_sq.unsqueeze(-1) + sigma2_sq.unsqueeze(-1) + c2 * compensation) | |
| ssim_map = (mu1_mu2 * 2 + c1 * compensation) / (mu1_sq.unsqueeze(-1) + mu2_sq.unsqueeze(-1) + c1 * compensation) | |
| ssim_map = ssim_map * cs_map | |
| ssim_val = ssim_map.mean(dim=(-2, -3)) | |
| cs = cs_map.mean(dim=(-2, -3)) | |
| return ssim_val, cs | |