Spaces:
Runtime error
Runtime error
| import torch | |
| import torchaudio | |
| from torch import nn | |
| from torch.nn import Conv1d, ConvTranspose1d | |
| from torch.nn import functional as F | |
| from torch.nn.utils.parametrizations import weight_norm | |
| from torch.nn.utils.parametrize import remove_parametrizations | |
| from TTS.utils.io import load_fsspec | |
| LRELU_SLOPE = 0.1 | |
| def get_padding(k, d): | |
| return int((k * d - d) / 2) | |
| class ResBlock1(torch.nn.Module): | |
| """Residual Block Type 1. It has 3 convolutional layers in each convolutional block. | |
| Network:: | |
| x -> lrelu -> conv1_1 -> conv1_2 -> conv1_3 -> z -> lrelu -> conv2_1 -> conv2_2 -> conv2_3 -> o -> + -> o | |
| |--------------------------------------------------------------------------------------------------| | |
| Args: | |
| channels (int): number of hidden channels for the convolutional layers. | |
| kernel_size (int): size of the convolution filter in each layer. | |
| dilations (list): list of dilation value for each conv layer in a block. | |
| """ | |
| def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): | |
| super().__init__() | |
| self.convs1 = nn.ModuleList( | |
| [ | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=dilation[0], | |
| padding=get_padding(kernel_size, dilation[0]), | |
| ) | |
| ), | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=dilation[1], | |
| padding=get_padding(kernel_size, dilation[1]), | |
| ) | |
| ), | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=dilation[2], | |
| padding=get_padding(kernel_size, dilation[2]), | |
| ) | |
| ), | |
| ] | |
| ) | |
| self.convs2 = nn.ModuleList( | |
| [ | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=1, | |
| padding=get_padding(kernel_size, 1), | |
| ) | |
| ), | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=1, | |
| padding=get_padding(kernel_size, 1), | |
| ) | |
| ), | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=1, | |
| padding=get_padding(kernel_size, 1), | |
| ) | |
| ), | |
| ] | |
| ) | |
| def forward(self, x): | |
| """ | |
| Args: | |
| x (Tensor): input tensor. | |
| Returns: | |
| Tensor: output tensor. | |
| Shapes: | |
| x: [B, C, T] | |
| """ | |
| for c1, c2 in zip(self.convs1, self.convs2): | |
| xt = F.leaky_relu(x, LRELU_SLOPE) | |
| xt = c1(xt) | |
| xt = F.leaky_relu(xt, LRELU_SLOPE) | |
| xt = c2(xt) | |
| x = xt + x | |
| return x | |
| def remove_weight_norm(self): | |
| for l in self.convs1: | |
| remove_parametrizations(l, "weight") | |
| for l in self.convs2: | |
| remove_parametrizations(l, "weight") | |
| class ResBlock2(torch.nn.Module): | |
| """Residual Block Type 2. It has 1 convolutional layers in each convolutional block. | |
| Network:: | |
| x -> lrelu -> conv1-> -> z -> lrelu -> conv2-> o -> + -> o | |
| |---------------------------------------------------| | |
| Args: | |
| channels (int): number of hidden channels for the convolutional layers. | |
| kernel_size (int): size of the convolution filter in each layer. | |
| dilations (list): list of dilation value for each conv layer in a block. | |
| """ | |
| def __init__(self, channels, kernel_size=3, dilation=(1, 3)): | |
| super().__init__() | |
| self.convs = nn.ModuleList( | |
| [ | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=dilation[0], | |
| padding=get_padding(kernel_size, dilation[0]), | |
| ) | |
| ), | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=dilation[1], | |
| padding=get_padding(kernel_size, dilation[1]), | |
| ) | |
| ), | |
| ] | |
| ) | |
| def forward(self, x): | |
| for c in self.convs: | |
| xt = F.leaky_relu(x, LRELU_SLOPE) | |
| xt = c(xt) | |
| x = xt + x | |
| return x | |
| def remove_weight_norm(self): | |
| for l in self.convs: | |
| remove_parametrizations(l, "weight") | |
| class HifiganGenerator(torch.nn.Module): | |
| def __init__( | |
| self, | |
| in_channels, | |
| out_channels, | |
| resblock_type, | |
| resblock_dilation_sizes, | |
| resblock_kernel_sizes, | |
| upsample_kernel_sizes, | |
| upsample_initial_channel, | |
| upsample_factors, | |
| inference_padding=5, | |
| cond_channels=0, | |
| conv_pre_weight_norm=True, | |
| conv_post_weight_norm=True, | |
| conv_post_bias=True, | |
| cond_in_each_up_layer=False, | |
| ): | |
| r"""HiFiGAN Generator with Multi-Receptive Field Fusion (MRF) | |
| Network: | |
| x -> lrelu -> upsampling_layer -> resblock1_k1x1 -> z1 -> + -> z_sum / #resblocks -> lrelu -> conv_post_7x1 -> tanh -> o | |
| .. -> zI ---| | |
| resblockN_kNx1 -> zN ---' | |
| Args: | |
| in_channels (int): number of input tensor channels. | |
| out_channels (int): number of output tensor channels. | |
| resblock_type (str): type of the `ResBlock`. '1' or '2'. | |
| resblock_dilation_sizes (List[List[int]]): list of dilation values in each layer of a `ResBlock`. | |
| resblock_kernel_sizes (List[int]): list of kernel sizes for each `ResBlock`. | |
| upsample_kernel_sizes (List[int]): list of kernel sizes for each transposed convolution. | |
| upsample_initial_channel (int): number of channels for the first upsampling layer. This is divided by 2 | |
| for each consecutive upsampling layer. | |
| upsample_factors (List[int]): upsampling factors (stride) for each upsampling layer. | |
| inference_padding (int): constant padding applied to the input at inference time. Defaults to 5. | |
| """ | |
| super().__init__() | |
| self.inference_padding = inference_padding | |
| self.num_kernels = len(resblock_kernel_sizes) | |
| self.num_upsamples = len(upsample_factors) | |
| self.cond_in_each_up_layer = cond_in_each_up_layer | |
| # initial upsampling layers | |
| self.conv_pre = weight_norm(Conv1d(in_channels, upsample_initial_channel, 7, 1, padding=3)) | |
| resblock = ResBlock1 if resblock_type == "1" else ResBlock2 | |
| # upsampling layers | |
| self.ups = nn.ModuleList() | |
| for i, (u, k) in enumerate(zip(upsample_factors, upsample_kernel_sizes)): | |
| self.ups.append( | |
| weight_norm( | |
| ConvTranspose1d( | |
| upsample_initial_channel // (2**i), | |
| upsample_initial_channel // (2 ** (i + 1)), | |
| k, | |
| u, | |
| padding=(k - u) // 2, | |
| ) | |
| ) | |
| ) | |
| # MRF blocks | |
| self.resblocks = nn.ModuleList() | |
| for i in range(len(self.ups)): | |
| ch = upsample_initial_channel // (2 ** (i + 1)) | |
| for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): | |
| self.resblocks.append(resblock(ch, k, d)) | |
| # post convolution layer | |
| self.conv_post = weight_norm(Conv1d(ch, out_channels, 7, 1, padding=3, bias=conv_post_bias)) | |
| if cond_channels > 0: | |
| self.cond_layer = nn.Conv1d(cond_channels, upsample_initial_channel, 1) | |
| if not conv_pre_weight_norm: | |
| remove_parametrizations(self.conv_pre, "weight") | |
| if not conv_post_weight_norm: | |
| remove_parametrizations(self.conv_post, "weight") | |
| if self.cond_in_each_up_layer: | |
| self.conds = nn.ModuleList() | |
| for i in range(len(self.ups)): | |
| ch = upsample_initial_channel // (2 ** (i + 1)) | |
| self.conds.append(nn.Conv1d(cond_channels, ch, 1)) | |
| def forward(self, x, g=None): | |
| """ | |
| Args: | |
| x (Tensor): feature input tensor. | |
| g (Tensor): global conditioning input tensor. | |
| Returns: | |
| Tensor: output waveform. | |
| Shapes: | |
| x: [B, C, T] | |
| Tensor: [B, 1, T] | |
| """ | |
| o = self.conv_pre(x) | |
| if hasattr(self, "cond_layer"): | |
| o = o + self.cond_layer(g) | |
| for i in range(self.num_upsamples): | |
| o = F.leaky_relu(o, LRELU_SLOPE) | |
| o = self.ups[i](o) | |
| if self.cond_in_each_up_layer: | |
| o = o + self.conds[i](g) | |
| z_sum = None | |
| for j in range(self.num_kernels): | |
| if z_sum is None: | |
| z_sum = self.resblocks[i * self.num_kernels + j](o) | |
| else: | |
| z_sum += self.resblocks[i * self.num_kernels + j](o) | |
| o = z_sum / self.num_kernels | |
| o = F.leaky_relu(o) | |
| o = self.conv_post(o) | |
| o = torch.tanh(o) | |
| return o | |
| def inference(self, c): | |
| """ | |
| Args: | |
| x (Tensor): conditioning input tensor. | |
| Returns: | |
| Tensor: output waveform. | |
| Shapes: | |
| x: [B, C, T] | |
| Tensor: [B, 1, T] | |
| """ | |
| c = c.to(self.conv_pre.weight.device) | |
| c = torch.nn.functional.pad(c, (self.inference_padding, self.inference_padding), "replicate") | |
| return self.forward(c) | |
| def remove_weight_norm(self): | |
| print("Removing weight norm...") | |
| for l in self.ups: | |
| remove_parametrizations(l, "weight") | |
| for l in self.resblocks: | |
| l.remove_weight_norm() | |
| remove_parametrizations(self.conv_pre, "weight") | |
| remove_parametrizations(self.conv_post, "weight") | |
| def load_checkpoint( | |
| self, config, checkpoint_path, eval=False, cache=False | |
| ): # pylint: disable=unused-argument, redefined-builtin | |
| state = torch.load(checkpoint_path, map_location=torch.device("cpu")) | |
| self.load_state_dict(state["model"]) | |
| if eval: | |
| self.eval() | |
| assert not self.training | |
| self.remove_weight_norm() | |
| class SELayer(nn.Module): | |
| def __init__(self, channel, reduction=8): | |
| super(SELayer, self).__init__() | |
| self.avg_pool = nn.AdaptiveAvgPool2d(1) | |
| self.fc = nn.Sequential( | |
| nn.Linear(channel, channel // reduction), | |
| nn.ReLU(inplace=True), | |
| nn.Linear(channel // reduction, channel), | |
| nn.Sigmoid(), | |
| ) | |
| def forward(self, x): | |
| b, c, _, _ = x.size() | |
| y = self.avg_pool(x).view(b, c) | |
| y = self.fc(y).view(b, c, 1, 1) | |
| return x * y | |
| class SEBasicBlock(nn.Module): | |
| expansion = 1 | |
| def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=8): | |
| super(SEBasicBlock, self).__init__() | |
| self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False) | |
| self.bn1 = nn.BatchNorm2d(planes) | |
| self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False) | |
| self.bn2 = nn.BatchNorm2d(planes) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.se = SELayer(planes, reduction) | |
| self.downsample = downsample | |
| self.stride = stride | |
| def forward(self, x): | |
| residual = x | |
| out = self.conv1(x) | |
| out = self.relu(out) | |
| out = self.bn1(out) | |
| out = self.conv2(out) | |
| out = self.bn2(out) | |
| out = self.se(out) | |
| if self.downsample is not None: | |
| residual = self.downsample(x) | |
| out += residual | |
| out = self.relu(out) | |
| return out | |
| def set_init_dict(model_dict, checkpoint_state, c): | |
| # Partial initialization: if there is a mismatch with new and old layer, it is skipped. | |
| for k, v in checkpoint_state.items(): | |
| if k not in model_dict: | |
| print(" | > Layer missing in the model definition: {}".format(k)) | |
| # 1. filter out unnecessary keys | |
| pretrained_dict = {k: v for k, v in checkpoint_state.items() if k in model_dict} | |
| # 2. filter out different size layers | |
| pretrained_dict = {k: v for k, v in pretrained_dict.items() if v.numel() == model_dict[k].numel()} | |
| # 3. skip reinit layers | |
| if c.has("reinit_layers") and c.reinit_layers is not None: | |
| for reinit_layer_name in c.reinit_layers: | |
| pretrained_dict = {k: v for k, v in pretrained_dict.items() if reinit_layer_name not in k} | |
| # 4. overwrite entries in the existing state dict | |
| model_dict.update(pretrained_dict) | |
| print(" | > {} / {} layers are restored.".format(len(pretrained_dict), len(model_dict))) | |
| return model_dict | |
| class PreEmphasis(nn.Module): | |
| def __init__(self, coefficient=0.97): | |
| super().__init__() | |
| self.coefficient = coefficient | |
| self.register_buffer("filter", torch.FloatTensor([-self.coefficient, 1.0]).unsqueeze(0).unsqueeze(0)) | |
| def forward(self, x): | |
| assert len(x.size()) == 2 | |
| x = torch.nn.functional.pad(x.unsqueeze(1), (1, 0), "reflect") | |
| return torch.nn.functional.conv1d(x, self.filter).squeeze(1) | |
| class ResNetSpeakerEncoder(nn.Module): | |
| """This is copied from πΈTTS to remove it from the dependencies.""" | |
| # pylint: disable=W0102 | |
| def __init__( | |
| self, | |
| input_dim=64, | |
| proj_dim=512, | |
| layers=[3, 4, 6, 3], | |
| num_filters=[32, 64, 128, 256], | |
| encoder_type="ASP", | |
| log_input=False, | |
| use_torch_spec=False, | |
| audio_config=None, | |
| ): | |
| super(ResNetSpeakerEncoder, self).__init__() | |
| self.encoder_type = encoder_type | |
| self.input_dim = input_dim | |
| self.log_input = log_input | |
| self.use_torch_spec = use_torch_spec | |
| self.audio_config = audio_config | |
| self.proj_dim = proj_dim | |
| self.conv1 = nn.Conv2d(1, num_filters[0], kernel_size=3, stride=1, padding=1) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.bn1 = nn.BatchNorm2d(num_filters[0]) | |
| self.inplanes = num_filters[0] | |
| self.layer1 = self.create_layer(SEBasicBlock, num_filters[0], layers[0]) | |
| self.layer2 = self.create_layer(SEBasicBlock, num_filters[1], layers[1], stride=(2, 2)) | |
| self.layer3 = self.create_layer(SEBasicBlock, num_filters[2], layers[2], stride=(2, 2)) | |
| self.layer4 = self.create_layer(SEBasicBlock, num_filters[3], layers[3], stride=(2, 2)) | |
| self.instancenorm = nn.InstanceNorm1d(input_dim) | |
| if self.use_torch_spec: | |
| self.torch_spec = torch.nn.Sequential( | |
| PreEmphasis(audio_config["preemphasis"]), | |
| torchaudio.transforms.MelSpectrogram( | |
| sample_rate=audio_config["sample_rate"], | |
| n_fft=audio_config["fft_size"], | |
| win_length=audio_config["win_length"], | |
| hop_length=audio_config["hop_length"], | |
| window_fn=torch.hamming_window, | |
| n_mels=audio_config["num_mels"], | |
| ), | |
| ) | |
| else: | |
| self.torch_spec = None | |
| outmap_size = int(self.input_dim / 8) | |
| self.attention = nn.Sequential( | |
| nn.Conv1d(num_filters[3] * outmap_size, 128, kernel_size=1), | |
| nn.ReLU(), | |
| nn.BatchNorm1d(128), | |
| nn.Conv1d(128, num_filters[3] * outmap_size, kernel_size=1), | |
| nn.Softmax(dim=2), | |
| ) | |
| if self.encoder_type == "SAP": | |
| out_dim = num_filters[3] * outmap_size | |
| elif self.encoder_type == "ASP": | |
| out_dim = num_filters[3] * outmap_size * 2 | |
| else: | |
| raise ValueError("Undefined encoder") | |
| self.fc = nn.Linear(out_dim, proj_dim) | |
| self._init_layers() | |
| def _init_layers(self): | |
| for m in self.modules(): | |
| if isinstance(m, nn.Conv2d): | |
| nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") | |
| elif isinstance(m, nn.BatchNorm2d): | |
| nn.init.constant_(m.weight, 1) | |
| nn.init.constant_(m.bias, 0) | |
| def create_layer(self, block, planes, blocks, stride=1): | |
| downsample = None | |
| if stride != 1 or self.inplanes != planes * block.expansion: | |
| downsample = nn.Sequential( | |
| nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), | |
| nn.BatchNorm2d(planes * block.expansion), | |
| ) | |
| layers = [] | |
| layers.append(block(self.inplanes, planes, stride, downsample)) | |
| self.inplanes = planes * block.expansion | |
| for _ in range(1, blocks): | |
| layers.append(block(self.inplanes, planes)) | |
| return nn.Sequential(*layers) | |
| # pylint: disable=R0201 | |
| def new_parameter(self, *size): | |
| out = nn.Parameter(torch.FloatTensor(*size)) | |
| nn.init.xavier_normal_(out) | |
| return out | |
| def forward(self, x, l2_norm=False): | |
| """Forward pass of the model. | |
| Args: | |
| x (Tensor): Raw waveform signal or spectrogram frames. If input is a waveform, `torch_spec` must be `True` | |
| to compute the spectrogram on-the-fly. | |
| l2_norm (bool): Whether to L2-normalize the outputs. | |
| Shapes: | |
| - x: :math:`(N, 1, T_{in})` or :math:`(N, D_{spec}, T_{in})` | |
| """ | |
| x.squeeze_(1) | |
| # if you torch spec compute it otherwise use the mel spec computed by the AP | |
| if self.use_torch_spec: | |
| x = self.torch_spec(x) | |
| if self.log_input: | |
| x = (x + 1e-6).log() | |
| x = self.instancenorm(x).unsqueeze(1) | |
| x = self.conv1(x) | |
| x = self.relu(x) | |
| x = self.bn1(x) | |
| x = self.layer1(x) | |
| x = self.layer2(x) | |
| x = self.layer3(x) | |
| x = self.layer4(x) | |
| x = x.reshape(x.size()[0], -1, x.size()[-1]) | |
| w = self.attention(x) | |
| if self.encoder_type == "SAP": | |
| x = torch.sum(x * w, dim=2) | |
| elif self.encoder_type == "ASP": | |
| mu = torch.sum(x * w, dim=2) | |
| sg = torch.sqrt((torch.sum((x**2) * w, dim=2) - mu**2).clamp(min=1e-5)) | |
| x = torch.cat((mu, sg), 1) | |
| x = x.view(x.size()[0], -1) | |
| x = self.fc(x) | |
| if l2_norm: | |
| x = torch.nn.functional.normalize(x, p=2, dim=1) | |
| return x | |
| def load_checkpoint( | |
| self, | |
| checkpoint_path: str, | |
| eval: bool = False, | |
| use_cuda: bool = False, | |
| criterion=None, | |
| cache=False, | |
| ): | |
| state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache) | |
| try: | |
| self.load_state_dict(state["model"]) | |
| print(" > Model fully restored. ") | |
| except (KeyError, RuntimeError) as error: | |
| # If eval raise the error | |
| if eval: | |
| raise error | |
| print(" > Partial model initialization.") | |
| model_dict = self.state_dict() | |
| model_dict = set_init_dict(model_dict, state["model"]) | |
| self.load_state_dict(model_dict) | |
| del model_dict | |
| # load the criterion for restore_path | |
| if criterion is not None and "criterion" in state: | |
| try: | |
| criterion.load_state_dict(state["criterion"]) | |
| except (KeyError, RuntimeError) as error: | |
| print(" > Criterion load ignored because of:", error) | |
| if use_cuda: | |
| self.cuda() | |
| if criterion is not None: | |
| criterion = criterion.cuda() | |
| if eval: | |
| self.eval() | |
| assert not self.training | |
| if not eval: | |
| return criterion, state["step"] | |
| return criterion | |
| class HifiDecoder(torch.nn.Module): | |
| def __init__( | |
| self, | |
| input_sample_rate=22050, | |
| output_sample_rate=24000, | |
| output_hop_length=256, | |
| ar_mel_length_compression=1024, | |
| decoder_input_dim=1024, | |
| resblock_type_decoder="1", | |
| resblock_dilation_sizes_decoder=[[1, 3, 5], [1, 3, 5], [1, 3, 5]], | |
| resblock_kernel_sizes_decoder=[3, 7, 11], | |
| upsample_rates_decoder=[8, 8, 2, 2], | |
| upsample_initial_channel_decoder=512, | |
| upsample_kernel_sizes_decoder=[16, 16, 4, 4], | |
| d_vector_dim=512, | |
| cond_d_vector_in_each_upsampling_layer=True, | |
| speaker_encoder_audio_config={ | |
| "fft_size": 512, | |
| "win_length": 400, | |
| "hop_length": 160, | |
| "sample_rate": 16000, | |
| "preemphasis": 0.97, | |
| "num_mels": 64, | |
| }, | |
| ): | |
| super().__init__() | |
| self.input_sample_rate = input_sample_rate | |
| self.output_sample_rate = output_sample_rate | |
| self.output_hop_length = output_hop_length | |
| self.ar_mel_length_compression = ar_mel_length_compression | |
| self.speaker_encoder_audio_config = speaker_encoder_audio_config | |
| self.waveform_decoder = HifiganGenerator( | |
| decoder_input_dim, | |
| 1, | |
| resblock_type_decoder, | |
| resblock_dilation_sizes_decoder, | |
| resblock_kernel_sizes_decoder, | |
| upsample_kernel_sizes_decoder, | |
| upsample_initial_channel_decoder, | |
| upsample_rates_decoder, | |
| inference_padding=0, | |
| cond_channels=d_vector_dim, | |
| conv_pre_weight_norm=False, | |
| conv_post_weight_norm=False, | |
| conv_post_bias=False, | |
| cond_in_each_up_layer=cond_d_vector_in_each_upsampling_layer, | |
| ) | |
| self.speaker_encoder = ResNetSpeakerEncoder( | |
| input_dim=64, | |
| proj_dim=512, | |
| log_input=True, | |
| use_torch_spec=True, | |
| audio_config=speaker_encoder_audio_config, | |
| ) | |
| def device(self): | |
| return next(self.parameters()).device | |
| def forward(self, latents, g=None): | |
| """ | |
| Args: | |
| x (Tensor): feature input tensor (GPT latent). | |
| g (Tensor): global conditioning input tensor. | |
| Returns: | |
| Tensor: output waveform. | |
| Shapes: | |
| x: [B, C, T] | |
| Tensor: [B, 1, T] | |
| """ | |
| z = torch.nn.functional.interpolate( | |
| latents.transpose(1, 2), | |
| scale_factor=[self.ar_mel_length_compression / self.output_hop_length], | |
| mode="linear", | |
| ).squeeze(1) | |
| # upsample to the right sr | |
| if self.output_sample_rate != self.input_sample_rate: | |
| z = torch.nn.functional.interpolate( | |
| z, | |
| scale_factor=[self.output_sample_rate / self.input_sample_rate], | |
| mode="linear", | |
| ).squeeze(0) | |
| o = self.waveform_decoder(z, g=g) | |
| return o | |
| def inference(self, c, g): | |
| """ | |
| Args: | |
| x (Tensor): feature input tensor (GPT latent). | |
| g (Tensor): global conditioning input tensor. | |
| Returns: | |
| Tensor: output waveform. | |
| Shapes: | |
| x: [B, C, T] | |
| Tensor: [B, 1, T] | |
| """ | |
| return self.forward(c, g=g) | |
| def load_checkpoint(self, checkpoint_path, eval=False): # pylint: disable=unused-argument, redefined-builtin | |
| state = load_fsspec(checkpoint_path, map_location=torch.device("cpu")) | |
| # remove unused keys | |
| state = state["model"] | |
| states_keys = list(state.keys()) | |
| for key in states_keys: | |
| if "waveform_decoder." not in key and "speaker_encoder." not in key: | |
| del state[key] | |
| self.load_state_dict(state) | |
| if eval: | |
| self.eval() | |
| assert not self.training | |
| self.waveform_decoder.remove_weight_norm() | |