Spaces:
Runtime error
Runtime error
| from typing import Dict, List, Optional, Tuple, Union | |
| import librosa | |
| import numpy as np | |
| import torch | |
| from coqpit import Coqpit | |
| from torch import nn | |
| from torch.nn import Conv1d, Conv2d, ConvTranspose1d | |
| from torch.nn import functional as F | |
| from torch.nn.utils import spectral_norm | |
| from torch.nn.utils.parametrizations import weight_norm | |
| from torch.nn.utils.parametrize import remove_parametrizations | |
| import TTS.vc.modules.freevc.commons as commons | |
| import TTS.vc.modules.freevc.modules as modules | |
| from TTS.tts.utils.speakers import SpeakerManager | |
| from TTS.utils.io import load_fsspec | |
| from TTS.vc.configs.freevc_config import FreeVCConfig | |
| from TTS.vc.models.base_vc import BaseVC | |
| from TTS.vc.modules.freevc.commons import get_padding, init_weights | |
| from TTS.vc.modules.freevc.mel_processing import mel_spectrogram_torch | |
| from TTS.vc.modules.freevc.speaker_encoder.speaker_encoder import SpeakerEncoder as SpeakerEncoderEx | |
| from TTS.vc.modules.freevc.wavlm import get_wavlm | |
| class ResidualCouplingBlock(nn.Module): | |
| def __init__(self, channels, hidden_channels, kernel_size, dilation_rate, n_layers, n_flows=4, gin_channels=0): | |
| super().__init__() | |
| self.channels = channels | |
| self.hidden_channels = hidden_channels | |
| self.kernel_size = kernel_size | |
| self.dilation_rate = dilation_rate | |
| self.n_layers = n_layers | |
| self.n_flows = n_flows | |
| self.gin_channels = gin_channels | |
| self.flows = nn.ModuleList() | |
| for i in range(n_flows): | |
| self.flows.append( | |
| modules.ResidualCouplingLayer( | |
| channels, | |
| hidden_channels, | |
| kernel_size, | |
| dilation_rate, | |
| n_layers, | |
| gin_channels=gin_channels, | |
| mean_only=True, | |
| ) | |
| ) | |
| self.flows.append(modules.Flip()) | |
| def forward(self, x, x_mask, g=None, reverse=False): | |
| if not reverse: | |
| for flow in self.flows: | |
| x, _ = flow(x, x_mask, g=g, reverse=reverse) | |
| else: | |
| for flow in reversed(self.flows): | |
| x = flow(x, x_mask, g=g, reverse=reverse) | |
| return x | |
| class Encoder(nn.Module): | |
| def __init__( | |
| self, in_channels, out_channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0 | |
| ): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| self.out_channels = out_channels | |
| self.hidden_channels = hidden_channels | |
| self.kernel_size = kernel_size | |
| self.dilation_rate = dilation_rate | |
| self.n_layers = n_layers | |
| self.gin_channels = gin_channels | |
| self.pre = nn.Conv1d(in_channels, hidden_channels, 1) | |
| self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels) | |
| self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) | |
| def forward(self, x, x_lengths, g=None): | |
| x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) | |
| x = self.pre(x) * x_mask | |
| x = self.enc(x, x_mask, g=g) | |
| stats = self.proj(x) * x_mask | |
| m, logs = torch.split(stats, self.out_channels, dim=1) | |
| z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask | |
| return z, m, logs, x_mask | |
| class Generator(torch.nn.Module): | |
| def __init__( | |
| self, | |
| initial_channel, | |
| resblock, | |
| resblock_kernel_sizes, | |
| resblock_dilation_sizes, | |
| upsample_rates, | |
| upsample_initial_channel, | |
| upsample_kernel_sizes, | |
| gin_channels=0, | |
| ): | |
| super(Generator, self).__init__() | |
| self.num_kernels = len(resblock_kernel_sizes) | |
| self.num_upsamples = len(upsample_rates) | |
| self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3) | |
| resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2 | |
| self.ups = nn.ModuleList() | |
| for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): | |
| self.ups.append( | |
| weight_norm( | |
| ConvTranspose1d( | |
| upsample_initial_channel // (2**i), | |
| upsample_initial_channel // (2 ** (i + 1)), | |
| k, | |
| u, | |
| padding=(k - u) // 2, | |
| ) | |
| ) | |
| ) | |
| self.resblocks = nn.ModuleList() | |
| for i in range(len(self.ups)): | |
| ch = upsample_initial_channel // (2 ** (i + 1)) | |
| for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): | |
| self.resblocks.append(resblock(ch, k, d)) | |
| self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) | |
| self.ups.apply(init_weights) | |
| if gin_channels != 0: | |
| self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) | |
| def forward(self, x, g=None): | |
| x = self.conv_pre(x) | |
| if g is not None: | |
| x = x + self.cond(g) | |
| for i in range(self.num_upsamples): | |
| x = F.leaky_relu(x, modules.LRELU_SLOPE) | |
| x = self.ups[i](x) | |
| xs = None | |
| for j in range(self.num_kernels): | |
| if xs is None: | |
| xs = self.resblocks[i * self.num_kernels + j](x) | |
| else: | |
| xs += self.resblocks[i * self.num_kernels + j](x) | |
| x = xs / self.num_kernels | |
| x = F.leaky_relu(x) | |
| x = self.conv_post(x) | |
| x = torch.tanh(x) | |
| return x | |
| def remove_weight_norm(self): | |
| print("Removing weight norm...") | |
| for l in self.ups: | |
| remove_parametrizations(l, "weight") | |
| for l in self.resblocks: | |
| remove_parametrizations(l, "weight") | |
| class DiscriminatorP(torch.nn.Module): | |
| def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): | |
| super(DiscriminatorP, self).__init__() | |
| self.period = period | |
| self.use_spectral_norm = use_spectral_norm | |
| norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
| self.convs = nn.ModuleList( | |
| [ | |
| norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), | |
| norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), | |
| norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), | |
| norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), | |
| norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))), | |
| ] | |
| ) | |
| self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) | |
| def forward(self, x): | |
| fmap = [] | |
| # 1d to 2d | |
| b, c, t = x.shape | |
| if t % self.period != 0: # pad first | |
| n_pad = self.period - (t % self.period) | |
| x = F.pad(x, (0, n_pad), "reflect") | |
| t = t + n_pad | |
| x = x.view(b, c, t // self.period, self.period) | |
| for l in self.convs: | |
| x = l(x) | |
| x = F.leaky_relu(x, modules.LRELU_SLOPE) | |
| fmap.append(x) | |
| x = self.conv_post(x) | |
| fmap.append(x) | |
| x = torch.flatten(x, 1, -1) | |
| return x, fmap | |
| class DiscriminatorS(torch.nn.Module): | |
| def __init__(self, use_spectral_norm=False): | |
| super(DiscriminatorS, self).__init__() | |
| norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
| self.convs = nn.ModuleList( | |
| [ | |
| norm_f(Conv1d(1, 16, 15, 1, padding=7)), | |
| norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), | |
| norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), | |
| norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), | |
| norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), | |
| norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), | |
| ] | |
| ) | |
| self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) | |
| def forward(self, x): | |
| fmap = [] | |
| for l in self.convs: | |
| x = l(x) | |
| x = F.leaky_relu(x, modules.LRELU_SLOPE) | |
| fmap.append(x) | |
| x = self.conv_post(x) | |
| fmap.append(x) | |
| x = torch.flatten(x, 1, -1) | |
| return x, fmap | |
| class MultiPeriodDiscriminator(torch.nn.Module): | |
| def __init__(self, use_spectral_norm=False): | |
| super(MultiPeriodDiscriminator, self).__init__() | |
| periods = [2, 3, 5, 7, 11] | |
| discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)] | |
| discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods] | |
| self.discriminators = nn.ModuleList(discs) | |
| def forward(self, y, y_hat): | |
| y_d_rs = [] | |
| y_d_gs = [] | |
| fmap_rs = [] | |
| fmap_gs = [] | |
| for i, d in enumerate(self.discriminators): | |
| y_d_r, fmap_r = d(y) | |
| y_d_g, fmap_g = d(y_hat) | |
| y_d_rs.append(y_d_r) | |
| y_d_gs.append(y_d_g) | |
| fmap_rs.append(fmap_r) | |
| fmap_gs.append(fmap_g) | |
| return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
| class SpeakerEncoder(torch.nn.Module): | |
| def __init__(self, mel_n_channels=80, model_num_layers=3, model_hidden_size=256, model_embedding_size=256): | |
| super(SpeakerEncoder, self).__init__() | |
| self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True) | |
| self.linear = nn.Linear(model_hidden_size, model_embedding_size) | |
| self.relu = nn.ReLU() | |
| def forward(self, mels): | |
| self.lstm.flatten_parameters() | |
| _, (hidden, _) = self.lstm(mels) | |
| embeds_raw = self.relu(self.linear(hidden[-1])) | |
| return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True) | |
| def compute_partial_slices(self, total_frames, partial_frames, partial_hop): | |
| mel_slices = [] | |
| for i in range(0, total_frames - partial_frames, partial_hop): | |
| mel_range = torch.arange(i, i + partial_frames) | |
| mel_slices.append(mel_range) | |
| return mel_slices | |
| def embed_utterance(self, mel, partial_frames=128, partial_hop=64): | |
| mel_len = mel.size(1) | |
| last_mel = mel[:, -partial_frames:] | |
| if mel_len > partial_frames: | |
| mel_slices = self.compute_partial_slices(mel_len, partial_frames, partial_hop) | |
| mels = list(mel[:, s] for s in mel_slices) | |
| mels.append(last_mel) | |
| mels = torch.stack(tuple(mels), 0).squeeze(1) | |
| with torch.no_grad(): | |
| partial_embeds = self(mels) | |
| embed = torch.mean(partial_embeds, axis=0).unsqueeze(0) | |
| # embed = embed / torch.linalg.norm(embed, 2) | |
| else: | |
| with torch.no_grad(): | |
| embed = self(last_mel) | |
| return embed | |
| class FreeVC(BaseVC): | |
| """ | |
| Papaer:: | |
| https://arxiv.org/abs/2210.15418# | |
| Paper Abstract:: | |
| Voice conversion (VC) can be achieved by first extracting source content information and target speaker | |
| information, and then reconstructing waveform with these information. However, current approaches normally | |
| either extract dirty content information with speaker information leaked in, or demand a large amount of | |
| annotated data for training. Besides, the quality of reconstructed waveform can be degraded by the | |
| mismatch between conversion model and vocoder. In this paper, we adopt the end-to-end framework of VITS for | |
| high-quality waveform reconstruction, and propose strategies for clean content information extraction without | |
| text annotation. We disentangle content information by imposing an information bottleneck to WavLM features, | |
| and propose the spectrogram-resize based data augmentation to improve the purity of extracted content | |
| information. Experimental results show that the proposed method outperforms the latest VC models trained with | |
| annotated data and has greater robustness. | |
| Original Code:: | |
| https://github.com/OlaWod/FreeVC | |
| Examples: | |
| >>> from TTS.vc.configs.freevc_config import FreeVCConfig | |
| >>> from TTS.vc.models.freevc import FreeVC | |
| >>> config = FreeVCConfig() | |
| >>> model = FreeVC(config) | |
| """ | |
| def __init__(self, config: Coqpit, speaker_manager: SpeakerManager = None): | |
| super().__init__(config, None, speaker_manager, None) | |
| self.init_multispeaker(config) | |
| self.spec_channels = self.args.spec_channels | |
| self.inter_channels = self.args.inter_channels | |
| self.hidden_channels = self.args.hidden_channels | |
| self.filter_channels = self.args.filter_channels | |
| self.n_heads = self.args.n_heads | |
| self.n_layers = self.args.n_layers | |
| self.kernel_size = self.args.kernel_size | |
| self.p_dropout = self.args.p_dropout | |
| self.resblock = self.args.resblock | |
| self.resblock_kernel_sizes = self.args.resblock_kernel_sizes | |
| self.resblock_dilation_sizes = self.args.resblock_dilation_sizes | |
| self.upsample_rates = self.args.upsample_rates | |
| self.upsample_initial_channel = self.args.upsample_initial_channel | |
| self.upsample_kernel_sizes = self.args.upsample_kernel_sizes | |
| self.segment_size = self.args.segment_size | |
| self.gin_channels = self.args.gin_channels | |
| self.ssl_dim = self.args.ssl_dim | |
| self.use_spk = self.args.use_spk | |
| self.enc_p = Encoder(self.args.ssl_dim, self.inter_channels, self.hidden_channels, 5, 1, 16) | |
| self.dec = Generator( | |
| self.inter_channels, | |
| self.resblock, | |
| self.resblock_kernel_sizes, | |
| self.resblock_dilation_sizes, | |
| self.upsample_rates, | |
| self.upsample_initial_channel, | |
| self.upsample_kernel_sizes, | |
| gin_channels=self.gin_channels, | |
| ) | |
| self.enc_q = Encoder( | |
| self.spec_channels, self.inter_channels, self.hidden_channels, 5, 1, 16, gin_channels=self.gin_channels | |
| ) | |
| self.flow = ResidualCouplingBlock( | |
| self.inter_channels, self.hidden_channels, 5, 1, 4, gin_channels=self.gin_channels | |
| ) | |
| if not self.use_spk: | |
| self.enc_spk = SpeakerEncoder(model_hidden_size=self.gin_channels, model_embedding_size=self.gin_channels) | |
| else: | |
| self.load_pretrained_speaker_encoder() | |
| self.wavlm = get_wavlm() | |
| def device(self): | |
| return next(self.parameters()).device | |
| def load_pretrained_speaker_encoder(self): | |
| """Load pretrained speaker encoder model as mentioned in the paper.""" | |
| print(" > Loading pretrained speaker encoder model ...") | |
| self.enc_spk_ex = SpeakerEncoderEx( | |
| "https://github.com/coqui-ai/TTS/releases/download/v0.13.0_models/speaker_encoder.pt" | |
| ) | |
| def init_multispeaker(self, config: Coqpit): | |
| """Initialize multi-speaker modules of a model. A model can be trained either with a speaker embedding layer | |
| or with external `d_vectors` computed from a speaker encoder model. | |
| You must provide a `speaker_manager` at initialization to set up the multi-speaker modules. | |
| Args: | |
| config (Coqpit): Model configuration. | |
| data (List, optional): Dataset items to infer number of speakers. Defaults to None. | |
| """ | |
| self.num_spks = self.args.num_spks | |
| if self.speaker_manager: | |
| self.num_spks = self.speaker_manager.num_spks | |
| def forward( | |
| self, | |
| c: torch.Tensor, | |
| spec: torch.Tensor, | |
| g: Optional[torch.Tensor] = None, | |
| mel: Optional[torch.Tensor] = None, | |
| c_lengths: Optional[torch.Tensor] = None, | |
| spec_lengths: Optional[torch.Tensor] = None, | |
| ) -> Tuple[ | |
| torch.Tensor, | |
| torch.Tensor, | |
| torch.Tensor, | |
| Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor], | |
| ]: | |
| """ | |
| Forward pass of the model. | |
| Args: | |
| c: WavLM features. Shape: (batch_size, c_seq_len). | |
| spec: The input spectrogram. Shape: (batch_size, spec_seq_len, spec_dim). | |
| g: The speaker embedding. Shape: (batch_size, spk_emb_dim). | |
| mel: The input mel-spectrogram for the speaker encoder. Shape: (batch_size, mel_seq_len, mel_dim). | |
| c_lengths: The lengths of the WavLM features. Shape: (batch_size,). | |
| spec_lengths: The lengths of the spectrogram. Shape: (batch_size,). | |
| Returns: | |
| o: The output spectrogram. Shape: (batch_size, spec_seq_len, spec_dim). | |
| ids_slice: The slice indices. Shape: (batch_size, num_slices). | |
| spec_mask: The spectrogram mask. Shape: (batch_size, spec_seq_len). | |
| (z, z_p, m_p, logs_p, m_q, logs_q): A tuple of latent variables. | |
| """ | |
| # If c_lengths is None, set it to the length of the last dimension of c | |
| if c_lengths is None: | |
| c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device) | |
| # If spec_lengths is None, set it to the length of the last dimension of spec | |
| if spec_lengths is None: | |
| spec_lengths = (torch.ones(spec.size(0)) * spec.size(-1)).to(spec.device) | |
| # If use_spk is False, compute g from mel using enc_spk | |
| g = None | |
| if not self.use_spk: | |
| g = self.enc_spk(mel).unsqueeze(-1) | |
| # Compute m_p, logs_p, z, m_q, logs_q, and spec_mask using enc_p and enc_q | |
| _, m_p, logs_p, _ = self.enc_p(c, c_lengths) | |
| z, m_q, logs_q, spec_mask = self.enc_q(spec.transpose(1, 2), spec_lengths, g=g) | |
| # Compute z_p using flow | |
| z_p = self.flow(z, spec_mask, g=g) | |
| # Randomly slice z and compute o using dec | |
| z_slice, ids_slice = commons.rand_slice_segments(z, spec_lengths, self.segment_size) | |
| o = self.dec(z_slice, g=g) | |
| return o, ids_slice, spec_mask, (z, z_p, m_p, logs_p, m_q, logs_q) | |
| def inference(self, c, g=None, mel=None, c_lengths=None): | |
| """ | |
| Inference pass of the model | |
| Args: | |
| c (torch.Tensor): Input tensor. Shape: (batch_size, c_seq_len). | |
| g (torch.Tensor): Speaker embedding tensor. Shape: (batch_size, spk_emb_dim). | |
| mel (torch.Tensor): Mel-spectrogram tensor. Shape: (batch_size, mel_seq_len, mel_dim). | |
| c_lengths (torch.Tensor): Lengths of the input tensor. Shape: (batch_size,). | |
| Returns: | |
| torch.Tensor: Output tensor. | |
| """ | |
| if c_lengths == None: | |
| c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device) | |
| if not self.use_spk: | |
| g = self.enc_spk.embed_utterance(mel) | |
| g = g.unsqueeze(-1) | |
| z_p, m_p, logs_p, c_mask = self.enc_p(c, c_lengths) | |
| z = self.flow(z_p, c_mask, g=g, reverse=True) | |
| o = self.dec(z * c_mask, g=g) | |
| return o | |
| def extract_wavlm_features(self, y): | |
| """Extract WavLM features from an audio tensor. | |
| Args: | |
| y (torch.Tensor): Audio tensor. Shape: (batch_size, audio_seq_len). | |
| """ | |
| with torch.no_grad(): | |
| c = self.wavlm.extract_features(y)[0] | |
| c = c.transpose(1, 2) | |
| return c | |
| def load_audio(self, wav): | |
| """Read and format the input audio.""" | |
| if isinstance(wav, str): | |
| wav, _ = librosa.load(wav, sr=self.config.audio.input_sample_rate) | |
| if isinstance(wav, np.ndarray): | |
| wav = torch.from_numpy(wav).to(self.device) | |
| if isinstance(wav, torch.Tensor): | |
| wav = wav.to(self.device) | |
| if isinstance(wav, list): | |
| wav = torch.from_numpy(np.array(wav)).to(self.device) | |
| return wav.float() | |
| def voice_conversion(self, src, tgt): | |
| """ | |
| Voice conversion pass of the model. | |
| Args: | |
| src (str or torch.Tensor): Source utterance. | |
| tgt (str or torch.Tensor): Target utterance. | |
| Returns: | |
| torch.Tensor: Output tensor. | |
| """ | |
| wav_tgt = self.load_audio(tgt).cpu().numpy() | |
| wav_tgt, _ = librosa.effects.trim(wav_tgt, top_db=20) | |
| if self.config.model_args.use_spk: | |
| g_tgt = self.enc_spk_ex.embed_utterance(wav_tgt) | |
| g_tgt = torch.from_numpy(g_tgt)[None, :, None].to(self.device) | |
| else: | |
| wav_tgt = torch.from_numpy(wav_tgt).unsqueeze(0).to(self.device) | |
| mel_tgt = mel_spectrogram_torch( | |
| wav_tgt, | |
| self.config.audio.filter_length, | |
| self.config.audio.n_mel_channels, | |
| self.config.audio.input_sample_rate, | |
| self.config.audio.hop_length, | |
| self.config.audio.win_length, | |
| self.config.audio.mel_fmin, | |
| self.config.audio.mel_fmax, | |
| ) | |
| # src | |
| wav_src = self.load_audio(src) | |
| c = self.extract_wavlm_features(wav_src[None, :]) | |
| if self.config.model_args.use_spk: | |
| audio = self.inference(c, g=g_tgt) | |
| else: | |
| audio = self.inference(c, mel=mel_tgt.transpose(1, 2)) | |
| audio = audio[0][0].data.cpu().float().numpy() | |
| return audio | |
| def eval_step(): | |
| ... | |
| def init_from_config(config: FreeVCConfig, samples: Union[List[List], List[Dict]] = None, verbose=True): | |
| model = FreeVC(config) | |
| return model | |
| def load_checkpoint(self, config, checkpoint_path, eval=False, strict=True, cache=False): | |
| state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache) | |
| self.load_state_dict(state["model"], strict=strict) | |
| if eval: | |
| self.eval() | |
| def train_step(): | |
| ... | |