Spaces:
Sleeping
Sleeping
Add pick color
Browse files- pages/App.py +6 -6
pages/App.py
CHANGED
@@ -256,7 +256,7 @@ def load_image(in_image_file):
|
|
256 |
in_image_file (string or Streamlit UploadedFile): image to consider
|
257 |
|
258 |
Returns:
|
259 |
-
string : locally saved image path
|
260 |
PIL.Image : input file opened with Pillow
|
261 |
matrix : input file opened with Opencv
|
262 |
"""
|
@@ -267,9 +267,9 @@ def load_image(in_image_file):
|
|
267 |
# out_image_path = "img."+in_image_file.name.split('.')[-1]
|
268 |
|
269 |
if isinstance(in_image_file, str):
|
270 |
-
out_image_path = "wrk_"+in_image_file
|
271 |
else:
|
272 |
-
out_image_path = "wrk_"+in_image_file.name
|
273 |
|
274 |
img = Image.open(in_image_file)
|
275 |
img_saved = img.save(out_image_path)
|
@@ -778,7 +778,7 @@ def tesserocr_recog(in_img, in_params, in_nb_images):
|
|
778 |
###
|
779 |
def draw_reco_images(in_image, in_boxes_coordinates, in_list_texts, in_list_confid, \
|
780 |
in_dict_back_colors, in_df_results_tesseract, in_reader_type_list, \
|
781 |
-
in_font_scale=
|
782 |
"""Draw recognized text on original image, for each OCR solution used
|
783 |
|
784 |
Args:
|
@@ -1099,7 +1099,7 @@ Use rectlar box to calculate faster, and polygonal box more accurate for curved
|
|
1099 |
placeholder='Limit tesseract to recognize only this characters', \
|
1100 |
help='Example for numbers only : 0123456789')
|
1101 |
|
1102 |
-
color_hex = col2.color_picker('
|
1103 |
color_part = color_hex.lstrip('#')
|
1104 |
color = tuple(int(color_part[i:i+2], 16) for i in (0, 2, 4))
|
1105 |
|
@@ -1358,7 +1358,7 @@ Use rectlar box to calculate faster, and polygonal box more accurate for curved
|
|
1358 |
|
1359 |
col_font, col_threshold = st.columns(2)
|
1360 |
|
1361 |
-
col_font.slider('Font scale', 1, 7,
|
1362 |
col_threshold.slider('% confidence threshold for text color change', 40, 100, 64, \
|
1363 |
step=1, key="conf_threshold_sld")
|
1364 |
col_threshold.write("(text color is black below this % confidence threshold, \
|
|
|
256 |
in_image_file (string or Streamlit UploadedFile): image to consider
|
257 |
|
258 |
Returns:
|
259 |
+
string : locally saved image path (img.)
|
260 |
PIL.Image : input file opened with Pillow
|
261 |
matrix : input file opened with Opencv
|
262 |
"""
|
|
|
267 |
# out_image_path = "img."+in_image_file.name.split('.')[-1]
|
268 |
|
269 |
if isinstance(in_image_file, str):
|
270 |
+
out_image_path = "tmp/wrk_"+in_image_file
|
271 |
else:
|
272 |
+
out_image_path = "tmp/wrk_"+in_image_file.name
|
273 |
|
274 |
img = Image.open(in_image_file)
|
275 |
img_saved = img.save(out_image_path)
|
|
|
778 |
###
|
779 |
def draw_reco_images(in_image, in_boxes_coordinates, in_list_texts, in_list_confid, \
|
780 |
in_dict_back_colors, in_df_results_tesseract, in_reader_type_list, \
|
781 |
+
in_font_scale=1, in_conf_threshold=65):
|
782 |
"""Draw recognized text on original image, for each OCR solution used
|
783 |
|
784 |
Args:
|
|
|
1099 |
placeholder='Limit tesseract to recognize only this characters', \
|
1100 |
help='Example for numbers only : 0123456789')
|
1101 |
|
1102 |
+
color_hex = col2.color_picker('Set a color for box outlines:', '#004C99')
|
1103 |
color_part = color_hex.lstrip('#')
|
1104 |
color = tuple(int(color_part[i:i+2], 16) for i in (0, 2, 4))
|
1105 |
|
|
|
1358 |
|
1359 |
col_font, col_threshold = st.columns(2)
|
1360 |
|
1361 |
+
col_font.slider('Font scale', 1, 7, 1, step=1, key="font_scale_sld")
|
1362 |
col_threshold.slider('% confidence threshold for text color change', 40, 100, 64, \
|
1363 |
step=1, key="conf_threshold_sld")
|
1364 |
col_threshold.write("(text color is black below this % confidence threshold, \
|