|
|
import gradio as gr |
|
|
import os |
|
|
import sys |
|
|
import json |
|
|
import requests |
|
|
|
|
|
MODEL = os.getenv("MODEL") |
|
|
API_URL = os.getenv("API_URL") |
|
|
DISABLED = os.getenv("DISABLED") == 'True' |
|
|
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") |
|
|
NUM_THREADS = int(os.getenv("NUM_THREADS")) |
|
|
|
|
|
print (NUM_THREADS) |
|
|
|
|
|
def exception_handler(exception_type, exception, traceback): |
|
|
print("%s: %s" % (exception_type.__name__, exception)) |
|
|
sys.excepthook = exception_handler |
|
|
sys.tracebacklimit = 0 |
|
|
|
|
|
|
|
|
def parse_codeblock(text): |
|
|
lines = text.split("\n") |
|
|
for i, line in enumerate(lines): |
|
|
if "```" in line: |
|
|
if line != "```": |
|
|
lines[i] = f'<pre><code class="{lines[i][3:]}">' |
|
|
else: |
|
|
lines[i] = '</code></pre>' |
|
|
else: |
|
|
if i > 0: |
|
|
lines[i] = "<br/>" + line.replace("<", "<").replace(">", ">") |
|
|
return "".join(lines) |
|
|
|
|
|
def predict(inputs, top_p, temperature, chat_counter, chatbot, history, request:gr.Request): |
|
|
payload = { |
|
|
"model": MODEL, |
|
|
"messages": [{"role": "user", "content": f"{inputs}"}], |
|
|
"temperature" : 1.0, |
|
|
"top_p":1.0, |
|
|
"n" : 1, |
|
|
"stream": True, |
|
|
"presence_penalty":0, |
|
|
"frequency_penalty":0, |
|
|
} |
|
|
|
|
|
headers = { |
|
|
"Content-Type": "application/json", |
|
|
"Authorization": f"Bearer {OPENAI_API_KEY}" |
|
|
} |
|
|
|
|
|
|
|
|
if chat_counter != 0 : |
|
|
messages = [] |
|
|
for i, data in enumerate(history): |
|
|
if i % 2 == 0: |
|
|
role = 'user' |
|
|
else: |
|
|
role = 'assistant' |
|
|
message = {} |
|
|
message["role"] = role |
|
|
message["content"] = data |
|
|
messages.append(message) |
|
|
|
|
|
message = {} |
|
|
message["role"] = "user" |
|
|
message["content"] = inputs |
|
|
messages.append(message) |
|
|
payload = { |
|
|
"model": MODEL, |
|
|
"messages": messages, |
|
|
"temperature" : temperature, |
|
|
"top_p": top_p, |
|
|
"n" : 1, |
|
|
"stream": True, |
|
|
"presence_penalty":0, |
|
|
"frequency_penalty":0, |
|
|
} |
|
|
|
|
|
chat_counter += 1 |
|
|
|
|
|
history.append(inputs) |
|
|
token_counter = 0 |
|
|
partial_words = "" |
|
|
counter = 0 |
|
|
|
|
|
try: |
|
|
|
|
|
response = requests.post(API_URL, headers=headers, json=payload, stream=True) |
|
|
response_code = f"{response}" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for chunk in response.iter_lines(): |
|
|
|
|
|
if counter == 0: |
|
|
counter += 1 |
|
|
continue |
|
|
|
|
|
|
|
|
if chunk.decode() : |
|
|
chunk = chunk.decode() |
|
|
|
|
|
if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']: |
|
|
partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"] |
|
|
if token_counter == 0: |
|
|
history.append(" " + partial_words) |
|
|
else: |
|
|
history[-1] = partial_words |
|
|
token_counter += 1 |
|
|
yield [(parse_codeblock(history[i]), parse_codeblock(history[i + 1])) for i in range(0, len(history) - 1, 2) ], history, chat_counter, response, gr.update(interactive=False), gr.update(interactive=False) |
|
|
except Exception as e: |
|
|
print (f'error found: {e}') |
|
|
yield [(parse_codeblock(history[i]), parse_codeblock(history[i + 1])) for i in range(0, len(history) - 1, 2) ], history, chat_counter, response, gr.update(interactive=True), gr.update(interactive=True) |
|
|
print(json.dumps({"chat_counter": chat_counter, "payload": payload, "partial_words": partial_words, "token_counter": token_counter, "counter": counter})) |
|
|
|
|
|
|
|
|
def reset_textbox(): |
|
|
return gr.update(value='', interactive=False), gr.update(interactive=False) |
|
|
|
|
|
title = """<h1 align="center">Free Chat GPT 4 online</h1>""" |
|
|
if DISABLED: |
|
|
title = """<h1 align="center" style="color:red">This app has reached OpenAI's usage limit. We are currently requesting an increase in our quota. Please check back in a few days.</h1>""" |
|
|
description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form: |
|
|
``` |
|
|
User: <utterance> |
|
|
Assistant: <utterance> |
|
|
User: <utterance> |
|
|
Assistant: <utterance> |
|
|
... |
|
|
``` |
|
|
In this app, you can explore the outputs of a gpt-4 LLM. |
|
|
""" |
|
|
|
|
|
theme = gr.themes.Default(primary_hue="green") |
|
|
|
|
|
with gr.Blocks(css = """#col_container { margin-left: auto; margin-right: auto;} |
|
|
#chatbot {height: 520px; overflow: auto;}""", |
|
|
theme=theme) as demo: |
|
|
gr.HTML(title) |
|
|
gr.HTML("""<h3 align="center">This app provides you full access for free to Chat GPT-4 from OpenAI thanks to <a href="https://stablediffusion.fr">Stable Diffusion online AI</a>. You don't need any OPENAI API key.<br><br>If this app doesn't respond, it's likely due to too much visitors. Consider trying <a href="https://stablediffusion.fr/chatgpt4"><b>ChatGPT 4 online</b></a> or <a href="https://stablediffusion.fr/chatgpt3">ChatGPT 3.5</a>, <a href="https://stablediffusion.fr/llama2">Llama 2</a> apps.</h3>""") |
|
|
with gr.Column(elem_id = "col_container", visible=True) as main_block: |
|
|
|
|
|
chatbot = gr.Chatbot(elem_id='chatbot') |
|
|
inputs = gr.Textbox(placeholder= "Hi there!", label= "Type an input and press Enter") |
|
|
state = gr.State([]) |
|
|
with gr.Row(): |
|
|
with gr.Column(scale=7): |
|
|
b1 = gr.Button(visible=not DISABLED) |
|
|
with gr.Column(scale=3): |
|
|
server_status_code = gr.Textbox(label="Status code from OpenAI server", ) |
|
|
|
|
|
|
|
|
with gr.Accordion("Parameters", open=False): |
|
|
top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",) |
|
|
temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",) |
|
|
|
|
|
|
|
|
chat_counter = gr.Number(value=0, visible=False, precision=0) |
|
|
|
|
|
|
|
|
def enable_inputs(): |
|
|
return main_block.update(visible=True) |
|
|
|
|
|
inputs.submit(reset_textbox, [], [inputs, b1], queue=False) |
|
|
inputs.submit(predict, [inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter, server_status_code, inputs, b1],) |
|
|
b1.click(reset_textbox, [], [inputs, b1], queue=False) |
|
|
b1.click(predict, [inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter, server_status_code, inputs, b1],) |
|
|
|
|
|
demo.queue(max_size=10, api_open=False).launch(share=False) |
|
|
|