Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -9,43 +9,27 @@ from threading import Thread
|
|
9 |
|
10 |
print(f"Starting to load the model to memory")
|
11 |
m = AutoModelForCausalLM.from_pretrained(
|
12 |
-
"stabilityai/stablelm-
|
13 |
-
tok = AutoTokenizer.from_pretrained("stabilityai/stablelm-
|
14 |
-
generator = pipeline('text-generation', model=m, tokenizer=tok
|
15 |
print(f"Sucessfully loaded the model to the memory")
|
16 |
|
17 |
-
start_message = ""
|
18 |
-
- StableAssistant is A helpful and harmless Open Source AI Language Model developed by Stability and CarperAI.
|
19 |
-
- StableAssistant is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
|
20 |
-
- StableAssistant is more than just an information source, StableAssistant is also able to write poetry, short stories, and make jokes.
|
21 |
-
- StableAssistant will refuse to participate in anything that could harm a human."""
|
22 |
-
|
23 |
-
|
24 |
-
class StopOnTokens(StoppingCriteria):
|
25 |
-
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
26 |
-
stop_ids = [50278, 50279, 50277, 1, 0]
|
27 |
-
for stop_id in stop_ids:
|
28 |
-
if input_ids[0][-1] == stop_id:
|
29 |
-
return True
|
30 |
-
return False
|
31 |
-
|
32 |
|
33 |
def user(message, history):
|
34 |
# Append the user's message to the conversation history
|
35 |
return "", history + [[message, ""]]
|
36 |
|
37 |
|
38 |
-
def chat(
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
for item in history])
|
46 |
-
|
47 |
# Tokenize the messages string
|
48 |
-
model_inputs = tok([messages], return_tensors="pt")
|
49 |
streamer = TextIteratorStreamer(
|
50 |
tok, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
51 |
generate_kwargs = dict(
|
@@ -55,9 +39,8 @@ def chat(curr_system_message, history):
|
|
55 |
do_sample=True,
|
56 |
top_p=0.95,
|
57 |
top_k=1000,
|
58 |
-
temperature=
|
59 |
num_beams=1,
|
60 |
-
stopping_criteria=StoppingCriteriaList([stop])
|
61 |
)
|
62 |
t = Thread(target=m.generate, kwargs=generate_kwargs)
|
63 |
t.start()
|
@@ -76,8 +59,8 @@ def chat(curr_system_message, history):
|
|
76 |
|
77 |
with gr.Blocks() as demo:
|
78 |
# history = gr.State([])
|
79 |
-
gr.Markdown("##
|
80 |
-
gr.HTML('''<center><a href="https://huggingface.co/spaces/stabilityai/stablelm-
|
81 |
chatbot = gr.Chatbot().style(height=500)
|
82 |
with gr.Row():
|
83 |
with gr.Column():
|
@@ -88,13 +71,11 @@ with gr.Blocks() as demo:
|
|
88 |
submit = gr.Button("Submit")
|
89 |
stop = gr.Button("Stop")
|
90 |
clear = gr.Button("Clear")
|
91 |
-
system_msg = gr.Textbox(
|
92 |
-
start_message, label="System Message", interactive=False, visible=False)
|
93 |
|
94 |
submit_event = msg.submit(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then(
|
95 |
-
fn=chat, inputs=[
|
96 |
submit_click_event = submit.click(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then(
|
97 |
-
fn=chat, inputs=[
|
98 |
stop.click(fn=None, inputs=None, outputs=None, cancels=[
|
99 |
submit_event, submit_click_event], queue=False)
|
100 |
clear.click(lambda: None, None, [chatbot], queue=False)
|
|
|
9 |
|
10 |
print(f"Starting to load the model to memory")
|
11 |
m = AutoModelForCausalLM.from_pretrained(
|
12 |
+
"stabilityai/stablelm-2-1_6b-zephyr", torch_dtype=torch.float16, trust_remote_code=True)
|
13 |
+
tok = AutoTokenizer.from_pretrained("stabilityai/stablelm-2-1_6b-zephyr", trust_remote_code=True)
|
14 |
+
generator = pipeline('text-generation', model=m, tokenizer=tok)
|
15 |
print(f"Sucessfully loaded the model to the memory")
|
16 |
|
17 |
+
start_message = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
def user(message, history):
|
20 |
# Append the user's message to the conversation history
|
21 |
return "", history + [[message, ""]]
|
22 |
|
23 |
|
24 |
+
def chat(history):
|
25 |
+
chat = []
|
26 |
+
for item in history:
|
27 |
+
chat.append({"role": "user", "content": item[0]})
|
28 |
+
if item[1] is not None:
|
29 |
+
chat.append({"role": "assistant", "content": item[0]})
|
30 |
+
messages = tokenizer.apply_chat_template(chat, tokenize=False)
|
|
|
|
|
31 |
# Tokenize the messages string
|
32 |
+
model_inputs = tok([messages], return_tensors="pt")
|
33 |
streamer = TextIteratorStreamer(
|
34 |
tok, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
35 |
generate_kwargs = dict(
|
|
|
39 |
do_sample=True,
|
40 |
top_p=0.95,
|
41 |
top_k=1000,
|
42 |
+
temperature=0.75,
|
43 |
num_beams=1,
|
|
|
44 |
)
|
45 |
t = Thread(target=m.generate, kwargs=generate_kwargs)
|
46 |
t.start()
|
|
|
59 |
|
60 |
with gr.Blocks() as demo:
|
61 |
# history = gr.State([])
|
62 |
+
gr.Markdown("## Stable LM 1.6b Zephyr")
|
63 |
+
gr.HTML('''<center><a href="https://huggingface.co/spaces/stabilityai/stablelm-2-1_6b-zephyr?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space to skip the queue and run in a private space</center>''')
|
64 |
chatbot = gr.Chatbot().style(height=500)
|
65 |
with gr.Row():
|
66 |
with gr.Column():
|
|
|
71 |
submit = gr.Button("Submit")
|
72 |
stop = gr.Button("Stop")
|
73 |
clear = gr.Button("Clear")
|
|
|
|
|
74 |
|
75 |
submit_event = msg.submit(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then(
|
76 |
+
fn=chat, inputs=[chatbot], outputs=[chatbot], queue=True)
|
77 |
submit_click_event = submit.click(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then(
|
78 |
+
fn=chat, inputs=[chatbot], outputs=[chatbot], queue=True)
|
79 |
stop.click(fn=None, inputs=None, outputs=None, cancels=[
|
80 |
submit_event, submit_click_event], queue=False)
|
81 |
clear.click(lambda: None, None, [chatbot], queue=False)
|