Spaces:
Runtime error
Runtime error
reshinthadith
commited on
Commit
•
4244b29
1
Parent(s):
b5b884d
Update app.py
Browse files
app.py
CHANGED
@@ -7,103 +7,103 @@ from torch.nn import functional as F
|
|
7 |
import os
|
8 |
token_key = os.environ.get("HF_ACCESS_TOKEN")
|
9 |
|
10 |
-
if torch.cuda.is_available():
|
11 |
-
|
12 |
-
|
13 |
-
else:
|
14 |
-
|
15 |
-
|
16 |
-
generator = pipeline('text-generation', model=m, tokenizer=tok, device=0)
|
17 |
-
|
18 |
-
|
19 |
-
start_message = """<|SYSTEM|># StableAssistant
|
20 |
-
- StableAssistant is A helpful and harmless Open Source AI Language Model developed by Stability and CarperAI.
|
21 |
-
- StableAssistant is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
|
22 |
-
- StableAssistant is more than just an information source, StableAssistant is also able to write poetry, short stories, and make jokes.
|
23 |
-
- StableAssistant will refuse to participate in anything that could harm a human."""
|
24 |
-
|
25 |
-
|
26 |
-
class StopOnTokens(StoppingCriteria):
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
def contrastive_generate(text, bad_text):
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
def generate(text, bad_text=None):
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
def user(user_message, history):
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
def bot(history, curr_system_message):
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
def system_update(msg):
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
with gr.Blocks() as demo:
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
demo.launch(share=True)
|
|
|
7 |
import os
|
8 |
token_key = os.environ.get("HF_ACCESS_TOKEN")
|
9 |
|
10 |
+
# if torch.cuda.is_available():
|
11 |
+
# m = AutoModelForCausalLM.from_pretrained("stabilityai/stablelm-tuned-alpha-7b",use_auth_token=token_key, torch_dtype=torch.float16).cuda()
|
12 |
+
# tok = AutoTokenizer.from_pretrained("stabilityai/stablelm-tuned-alpha-7b",use_auth_token=token_key)
|
13 |
+
# else:
|
14 |
+
# m = AutoModelForCausalLM.from_pretrained("stabilityai/stablelm-tuned-alpha-7b",use_auth_token=token_key, torch_dtype=torch.float16)
|
15 |
+
# tok = AutoTokenizer.from_pretrained("stabilityai/stablelm-tuned-alpha-7b",use_auth_token=token_key)
|
16 |
+
# generator = pipeline('text-generation', model=m, tokenizer=tok, device=0)
|
17 |
+
|
18 |
+
|
19 |
+
# start_message = """<|SYSTEM|># StableAssistant
|
20 |
+
# - StableAssistant is A helpful and harmless Open Source AI Language Model developed by Stability and CarperAI.
|
21 |
+
# - StableAssistant is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
|
22 |
+
# - StableAssistant is more than just an information source, StableAssistant is also able to write poetry, short stories, and make jokes.
|
23 |
+
# - StableAssistant will refuse to participate in anything that could harm a human."""
|
24 |
+
|
25 |
+
|
26 |
+
# class StopOnTokens(StoppingCriteria):
|
27 |
+
# def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
28 |
+
# stop_ids = [50278, 50279, 50277, 1, 0]
|
29 |
+
# for stop_id in stop_ids:
|
30 |
+
# if input_ids[0][-1] == stop_id:
|
31 |
+
# return True
|
32 |
+
# return False
|
33 |
+
|
34 |
+
|
35 |
+
# def contrastive_generate(text, bad_text):
|
36 |
+
# with torch.no_grad():
|
37 |
+
# if torch.cuda_is_available():
|
38 |
+
# tokens = tok(text, return_tensors="pt")['input_ids'].cuda()[:,:4096-1024]
|
39 |
+
# bad_tokens = tok(bad_text, return_tensors="pt")['input_ids'].cuda()[:,:4096-1024]
|
40 |
+
# else:
|
41 |
+
# tokens = tok(text, return_tensors="pt")['input_ids'][:,:4096-1024]
|
42 |
+
# bad_tokens = tok(bad_text, return_tensors="pt")['input_ids'][:,:4096-1024]
|
43 |
+
# history = None
|
44 |
+
# bad_history = None
|
45 |
+
# curr_output = list()
|
46 |
+
# for i in range(1024):
|
47 |
+
# out = m(tokens, past_key_values=history, use_cache=True)
|
48 |
+
# logits = out.logits
|
49 |
+
# history = out.past_key_values
|
50 |
+
# bad_out = m(bad_tokens, past_key_values=bad_history, use_cache=True)
|
51 |
+
# bad_logits = bad_out.logits
|
52 |
+
# bad_history = bad_out.past_key_values
|
53 |
+
# probs = F.softmax(logits.float(), dim=-1)[0][-1].cpu()
|
54 |
+
# bad_probs = F.softmax(bad_logits.float(), dim=-1)[0][-1].cpu()
|
55 |
+
# logits = torch.log(probs)
|
56 |
+
# bad_logits = torch.log(bad_probs)
|
57 |
+
# logits[probs > 0.1] = logits[probs > 0.1] - bad_logits[probs > 0.1]
|
58 |
+
# probs = F.softmax(logits)
|
59 |
+
# out = int(torch.multinomial(probs, 1))
|
60 |
+
# if out in [50278, 50279, 50277, 1, 0]:
|
61 |
+
# break
|
62 |
+
# else:
|
63 |
+
# curr_output.append(out)
|
64 |
+
# out = np.array([out])
|
65 |
+
# tokens = torch.from_numpy(np.array([out])).to(
|
66 |
+
# tokens.device)
|
67 |
+
# bad_tokens = torch.from_numpy(np.array([out])).to(
|
68 |
+
# tokens.device)
|
69 |
+
# return tok.decode(curr_output)
|
70 |
+
|
71 |
+
# def generate(text, bad_text=None):
|
72 |
+
# stop = StopOnTokens()
|
73 |
+
# result = generator(text, max_new_tokens=1024, num_return_sequences=1, num_beams=1, do_sample=True, temperature=1.0, top_p=0.95, top_k=1000, stopping_criteria=StoppingCriteriaList([stop]))
|
74 |
+
# return result[0]["generated_text"].replace(text, "")
|
75 |
+
|
76 |
+
|
77 |
+
# def user(user_message, history):
|
78 |
+
# return "", history + [[user_message, ""]]
|
79 |
+
|
80 |
+
|
81 |
+
# def bot(history, curr_system_message):
|
82 |
+
# messages = curr_system_message + "".join(["".join(["<|USER|>"+item[0], "<|ASSISTANT|>"+item[1]]) for item in history])
|
83 |
+
# output = generate(messages)
|
84 |
+
# history[-1][1] = output
|
85 |
+
# time.sleep(1)
|
86 |
+
# return history
|
87 |
+
|
88 |
+
|
89 |
+
# def system_update(msg):
|
90 |
+
# global curr_system_message
|
91 |
+
# curr_system_message = msg
|
92 |
+
|
93 |
+
|
94 |
+
# with gr.Blocks() as demo:
|
95 |
+
# gr.Markdown("###StableLM-tuned-Alpha-7B Chat")
|
96 |
+
# with gr.Row():
|
97 |
+
# with gr.Column():
|
98 |
+
# chatbot = gr.Chatbot([])
|
99 |
+
# clear = gr.Button("Clear")
|
100 |
+
# with gr.Column():
|
101 |
+
# system_msg = start_message#gr.Textbox(start_message, label="System Message", interactive=True)
|
102 |
+
# msg = gr.Textbox(label="Chat Message")
|
103 |
+
|
104 |
+
# msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
105 |
+
# bot, [chatbot, system_msg], chatbot
|
106 |
+
# )
|
107 |
+
# system_msg.change(system_update, system_msg, None, queue=False)
|
108 |
+
# clear.click(lambda: None, None, chatbot, queue=False)
|
109 |
+
# demo.launch(share=True)
|