Spaces:
Runtime error
Runtime error
import gradio as gr | |
import argparse | |
import os | |
#hack install gradio | |
os.system("pip uninstall -y gradio") | |
os.system("pip install gradio==3.50.2") | |
import json | |
from threading import Thread | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
MAX_MAX_NEW_TOKENS = 4096 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--base_model", type=str) # model path | |
parser.add_argument("--n_gpus", type=int, default=1) # n_gpu | |
return parser.parse_args() | |
def predict(message, history, system_prompt, temperature, max_tokens): | |
global model, tokenizer, device | |
instruction = "<|im_start|>system\nA chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.\n<|im_end|>\n" | |
for human, assistant in history: | |
instruction += '<|im_start|>user\n' + human + '\n<|im_end|>\n<|im_start|>assistant\n' + assistant | |
instruction += '\n<|im_start|>user\n' + message + '\n<|im_end|>\n<|im_start|>assistant\n' | |
problem = [instruction] | |
stop_tokens = ["<|endoftext|>", "<|im_end|>"] | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
enc = tokenizer(problem, return_tensors="pt", padding=True, truncation=True) | |
input_ids = enc.input_ids | |
attention_mask = enc.attention_mask | |
if input_ids.shape[1] > MAX_MAX_NEW_TOKENS: | |
input_ids = input_ids[:, -MAX_MAX_NEW_TOKENS:] | |
input_ids = input_ids.to(device) | |
attention_mask = attention_mask.to(device) | |
generate_kwargs = dict( | |
{"input_ids": input_ids, "attention_mask": attention_mask}, | |
streamer=streamer, | |
do_sample=True, | |
top_p=0.95, | |
temperature=0.5, | |
max_new_tokens=DEFAULT_MAX_NEW_TOKENS, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
print(text) | |
if text in stop_tokens: | |
break | |
yield "".join(outputs) | |
if __name__ == "__main__": | |
args = parse_args() | |
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-code-instruct-3b") | |
model = AutoModelForCausalLM.from_pretrained("stabilityai/stable-code-instruct-3b") | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model = model.half() | |
model = model.to(device) | |
gr.ChatInterface( | |
predict, | |
title="Stable Code Instruct Chat - Demo", | |
description="Chat Model Stable Code 3B", | |
theme="soft", | |
chatbot=gr.Chatbot(height=1400, label="Chat History",), | |
textbox=gr.Textbox(placeholder="input", container=False, scale=7), | |
retry_btn=None, | |
undo_btn="Delete Previous", | |
clear_btn="Clear", | |
additional_inputs=[ | |
gr.Textbox("A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.", label="System Prompt"), | |
gr.Slider(0, 1, 0.9, label="Temperature"), | |
gr.Slider(100, 2048, 1024, label="Max Tokens"), | |
], | |
additional_inputs_accordion_name="Parameters", | |
).queue().launch() | |