pvduy's picture
hack install gradio 3.50.2
d6839dc
raw
history blame
3.31 kB
import gradio as gr
import argparse
import os
#hack install gradio
os.system("pip uninstall -y gradio")
os.system("pip install gradio==3.50.2")
import json
from threading import Thread
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 1024
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--base_model", type=str) # model path
parser.add_argument("--n_gpus", type=int, default=1) # n_gpu
return parser.parse_args()
def predict(message, history, system_prompt, temperature, max_tokens):
global model, tokenizer, device
instruction = "<|im_start|>system\nA chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.\n<|im_end|>\n"
for human, assistant in history:
instruction += '<|im_start|>user\n' + human + '\n<|im_end|>\n<|im_start|>assistant\n' + assistant
instruction += '\n<|im_start|>user\n' + message + '\n<|im_end|>\n<|im_start|>assistant\n'
problem = [instruction]
stop_tokens = ["<|endoftext|>", "<|im_end|>"]
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
enc = tokenizer(problem, return_tensors="pt", padding=True, truncation=True)
input_ids = enc.input_ids
attention_mask = enc.attention_mask
if input_ids.shape[1] > MAX_MAX_NEW_TOKENS:
input_ids = input_ids[:, -MAX_MAX_NEW_TOKENS:]
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
generate_kwargs = dict(
{"input_ids": input_ids, "attention_mask": attention_mask},
streamer=streamer,
do_sample=True,
top_p=0.95,
temperature=0.5,
max_new_tokens=DEFAULT_MAX_NEW_TOKENS,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
print(text)
if text in stop_tokens:
break
yield "".join(outputs)
if __name__ == "__main__":
args = parse_args()
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-code-instruct-3b")
model = AutoModelForCausalLM.from_pretrained("stabilityai/stable-code-instruct-3b")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.half()
model = model.to(device)
gr.ChatInterface(
predict,
title="Stable Code Instruct Chat - Demo",
description="Chat Model Stable Code 3B",
theme="soft",
chatbot=gr.Chatbot(height=1400, label="Chat History",),
textbox=gr.Textbox(placeholder="input", container=False, scale=7),
retry_btn=None,
undo_btn="Delete Previous",
clear_btn="Clear",
additional_inputs=[
gr.Textbox("A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.", label="System Prompt"),
gr.Slider(0, 1, 0.9, label="Temperature"),
gr.Slider(100, 2048, 1024, label="Max Tokens"),
],
additional_inputs_accordion_name="Parameters",
).queue().launch()