|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import List, Tuple, Type |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from .mlp import MLPBlock |
|
|
|
|
|
class PromptEncoder(nn.Module): |
|
def __init__( |
|
self, |
|
embed_dim: int, |
|
image_embedding_size: Tuple[int, int], |
|
input_image_size: Tuple[int, int], |
|
) -> None: |
|
""" |
|
Encodes prompts for input to SAM's mask decoder. |
|
|
|
Arguments: |
|
embed_dim (int): The prompts' embedding dimension |
|
image_embedding_size (tuple(int, int)): The spatial size of the |
|
image embedding, as (H, W). |
|
input_image_size (int): The padded size of the image as input |
|
to the image encoder, as (H, W). |
|
""" |
|
super().__init__() |
|
self.embed_dim = embed_dim |
|
self.input_image_size = input_image_size |
|
self.image_embedding_size = image_embedding_size |
|
self.pe_layer = PositionEmbeddingRandom(embed_dim // 2) |
|
self.invalid_points = nn.Embedding(1, embed_dim) |
|
self.point_embeddings = nn.Embedding(1, embed_dim) |
|
self.bbox_top_left_embeddings = nn.Embedding(1, embed_dim) |
|
self.bbox_bottom_right_embeddings = nn.Embedding(1, embed_dim) |
|
|
|
def get_dense_pe(self) -> torch.Tensor: |
|
""" |
|
Returns the positional encoding used to encode point prompts, |
|
applied to a dense set of points the shape of the image encoding. |
|
|
|
Returns: |
|
torch.Tensor: Positional encoding with shape |
|
1x(embed_dim)x(embedding_h)x(embedding_w) |
|
""" |
|
return self.pe_layer(self.image_embedding_size).unsqueeze(0) |
|
|
|
def _embed_points( |
|
self, |
|
points: torch.Tensor, |
|
labels: torch.Tensor, |
|
) -> torch.Tensor: |
|
"""Embeds point prompts.""" |
|
|
|
points = points + 0.5 |
|
point_embedding = self.pe_layer.forward_with_coords( |
|
points, self.input_image_size |
|
) |
|
invalid_label_ids = torch.eq(labels, -1)[:,:,None] |
|
point_label_ids = torch.eq(labels, 1)[:,:,None] |
|
topleft_label_ids = torch.eq(labels, 2)[:,:,None] |
|
bottomright_label_ids = torch.eq(labels, 3)[:,:,None] |
|
point_embedding = point_embedding + self.invalid_points.weight[:,None,:] * invalid_label_ids |
|
point_embedding = point_embedding + self.point_embeddings.weight[:,None,:] * point_label_ids |
|
point_embedding = point_embedding + self.bbox_top_left_embeddings.weight[:,None,:] * topleft_label_ids |
|
point_embedding = point_embedding + self.bbox_bottom_right_embeddings.weight[:,None,:] * bottomright_label_ids |
|
return point_embedding |
|
|
|
def forward( |
|
self, |
|
coords, |
|
labels, |
|
) -> torch.Tensor: |
|
""" |
|
Embeds different types of prompts, returning both sparse and dense |
|
embeddings. |
|
|
|
Arguments: |
|
points: A tensor of shape [B, 2] |
|
labels: An integer tensor of shape [B] where each element is 1,2 or 3. |
|
|
|
Returns: |
|
torch.Tensor: sparse embeddings for the points and boxes, with shape |
|
BxNx(embed_dim), where N is determined by the number of input points |
|
and boxes. |
|
""" |
|
return self._embed_points(coords, labels) |
|
|
|
|
|
class PositionEmbeddingRandom(nn.Module): |
|
""" |
|
Positional encoding using random spatial frequencies. |
|
""" |
|
|
|
def __init__(self, num_pos_feats: int) -> None: |
|
super().__init__() |
|
self.register_buffer( |
|
"positional_encoding_gaussian_matrix", torch.randn((2, num_pos_feats)) |
|
) |
|
|
|
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor: |
|
"""Positionally encode points that are normalized to [0,1].""" |
|
|
|
coords = 2 * coords - 1 |
|
coords = coords @ self.positional_encoding_gaussian_matrix |
|
coords = 2 * np.pi * coords |
|
|
|
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1) |
|
|
|
def forward(self, size: Tuple[int, int]) -> torch.Tensor: |
|
"""Generate positional encoding for a grid of the specified size.""" |
|
h, w = size |
|
device = self.positional_encoding_gaussian_matrix.device |
|
grid = torch.ones([h, w], device=device, dtype=self.positional_encoding_gaussian_matrix.dtype) |
|
y_embed = grid.cumsum(dim=0) - 0.5 |
|
x_embed = grid.cumsum(dim=1) - 0.5 |
|
y_embed = y_embed / h |
|
x_embed = x_embed / w |
|
|
|
pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1)) |
|
return pe.permute(2, 0, 1) |
|
|
|
def forward_with_coords( |
|
self, coords_input: torch.Tensor, image_size: Tuple[int, int] |
|
) -> torch.Tensor: |
|
"""Positionally encode points that are not normalized to [0,1].""" |
|
coords = coords_input.clone() |
|
coords[:, :, 0] = coords[:, :, 0] / image_size[1] |
|
coords[:, :, 1] = coords[:, :, 1] / image_size[0] |
|
|
|
return self._pe_encoding(coords) |
|
|
|
|
|
class MaskDecoder(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
transformer_dim: int, |
|
transformer: nn.Module, |
|
num_multimask_outputs: int, |
|
activation: Type[nn.Module], |
|
normalization_type: str, |
|
normalize_before_activation: bool, |
|
iou_head_depth: int, |
|
iou_head_hidden_dim: int, |
|
upscaling_layer_dims: List[int], |
|
) -> None: |
|
""" |
|
Predicts masks given an image and prompt embeddings, using a |
|
transformer architecture. |
|
|
|
Arguments: |
|
transformer_dim (int): the channel dimension of the transformer |
|
transformer (nn.Module): the transformer used to predict masks |
|
num_multimask_outputs (int): the number of masks to predict |
|
when disambiguating masks |
|
activation (nn.Module): the type of activation to use when |
|
upscaling masks |
|
iou_head_depth (int): the depth of the MLP used to predict |
|
mask quality |
|
iou_head_hidden_dim (int): the hidden dimension of the MLP |
|
used to predict mask quality |
|
""" |
|
super().__init__() |
|
self.transformer_dim = transformer_dim |
|
self.transformer = transformer |
|
|
|
self.num_multimask_outputs = num_multimask_outputs |
|
|
|
self.iou_token = nn.Embedding(1, transformer_dim) |
|
if num_multimask_outputs > 1: |
|
self.num_mask_tokens = num_multimask_outputs + 1 |
|
else: |
|
self.num_mask_tokens = 1 |
|
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim) |
|
output_dim_after_upscaling = transformer_dim |
|
|
|
self.final_output_upscaling_layers = nn.ModuleList([]) |
|
for idx, layer_dims in enumerate(upscaling_layer_dims): |
|
self.final_output_upscaling_layers.append( |
|
nn.Sequential( |
|
nn.ConvTranspose2d( |
|
output_dim_after_upscaling, |
|
layer_dims, |
|
kernel_size=2, |
|
stride=2, |
|
), |
|
nn.GroupNorm(1, layer_dims) |
|
if idx < len(upscaling_layer_dims) - 1 |
|
else nn.Identity(), |
|
activation(), |
|
) |
|
) |
|
output_dim_after_upscaling = layer_dims |
|
|
|
self.output_hypernetworks_mlps = nn.ModuleList( |
|
[ |
|
MLPBlock( |
|
input_dim=transformer_dim, |
|
hidden_dim=transformer_dim, |
|
output_dim=output_dim_after_upscaling, |
|
num_layers=2, |
|
act=activation, |
|
) |
|
for i in range(self.num_mask_tokens) |
|
] |
|
) |
|
|
|
self.iou_prediction_head = MLPBlock( |
|
input_dim=transformer_dim, |
|
hidden_dim=iou_head_hidden_dim, |
|
output_dim=self.num_mask_tokens, |
|
num_layers=iou_head_depth, |
|
act=activation, |
|
) |
|
|
|
def forward( |
|
self, |
|
image_embeddings: torch.Tensor, |
|
image_pe: torch.Tensor, |
|
sparse_prompt_embeddings: torch.Tensor, |
|
multimask_output: bool, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Predict masks given image and prompt embeddings. |
|
|
|
Arguments: |
|
image_embeddings: A tensor of shape [B, C, H, W] or [B*max_num_queries, C, H, W] |
|
image_pe (torch.Tensor): positional encoding with the shape of image_embeddings (the batch dimension is broadcastable). |
|
sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes |
|
multimask_output (bool): Whether to return multiple masks or a single |
|
mask. |
|
|
|
Returns: |
|
torch.Tensor: batched predicted masks |
|
torch.Tensor: batched predictions of mask quality |
|
""" |
|
|
|
( |
|
batch_size, |
|
max_num_queries, |
|
sparse_embed_dim_1, |
|
sparse_embed_dim_2, |
|
) = sparse_prompt_embeddings.shape |
|
|
|
( |
|
_, |
|
image_embed_dim_c, |
|
image_embed_dim_h, |
|
image_embed_dim_w, |
|
) = image_embeddings.shape |
|
|
|
|
|
image_embeddings_tiled = torch.tile( |
|
image_embeddings[:, None, :, :, :], [1, max_num_queries, 1, 1, 1] |
|
).view( |
|
batch_size * max_num_queries, |
|
image_embed_dim_c, |
|
image_embed_dim_h, |
|
image_embed_dim_w, |
|
) |
|
sparse_prompt_embeddings = sparse_prompt_embeddings.reshape( |
|
batch_size * max_num_queries, sparse_embed_dim_1, sparse_embed_dim_2 |
|
) |
|
masks, iou_pred = self.predict_masks( |
|
image_embeddings=image_embeddings_tiled, |
|
image_pe=image_pe, |
|
sparse_prompt_embeddings=sparse_prompt_embeddings, |
|
) |
|
|
|
if multimask_output and self.num_multimask_outputs > 1: |
|
return masks[:, 1:, :], iou_pred[:, 1:] |
|
else: |
|
return masks[:, :1, :], iou_pred[:, :1] |
|
|
|
def predict_masks( |
|
self, |
|
image_embeddings: torch.Tensor, |
|
image_pe: torch.Tensor, |
|
sparse_prompt_embeddings: torch.Tensor, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
"""Predicts masks. See 'forward' for more details.""" |
|
|
|
output_tokens = torch.cat( |
|
[self.iou_token.weight, self.mask_tokens.weight], dim=0 |
|
) |
|
output_tokens = output_tokens.unsqueeze(0).expand( |
|
sparse_prompt_embeddings.size(0), -1, -1 |
|
) |
|
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) |
|
|
|
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) |
|
b, c, h, w = image_embeddings.shape |
|
hs, src = self.transformer(image_embeddings, pos_src, tokens) |
|
iou_token_out = hs[:, 0, :] |
|
mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :] |
|
|
|
|
|
upscaled_embedding = src.transpose(1, 2).view(b, c, h, w) |
|
|
|
for upscaling_layer in self.final_output_upscaling_layers: |
|
upscaled_embedding = upscaling_layer(upscaled_embedding) |
|
hyper_in_list: List[torch.Tensor] = [] |
|
for i, output_hypernetworks_mlp in enumerate(self.output_hypernetworks_mlps): |
|
hyper_in_list.append(output_hypernetworks_mlp(mask_tokens_out[:, i, :])) |
|
hyper_in = torch.stack(hyper_in_list, dim=1) |
|
b, c, h, w = upscaled_embedding.shape |
|
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w) |
|
|
|
iou_pred = self.iou_prediction_head(iou_token_out) |
|
return masks, iou_pred |
|
|