Spaces:
Build error
Build error
smagen10
commited on
Commit
·
2759de1
1
Parent(s):
82df0c0
utils added
Browse files- utils/__pycache__/advisor.cpython-312.pyc +0 -0
- utils/__pycache__/bg_removal.cpython-312.pyc +0 -0
- utils/__pycache__/detector.cpython-312.pyc +0 -0
- utils/__pycache__/detector.cpython-39.pyc +0 -0
- utils/advisor.py +7 -0
- utils/bg_removal.py +20 -0
- utils/detector.py +59 -0
- utils/test_detector.py +49 -0
- utils/test_llm.py +193 -0
utils/__pycache__/advisor.cpython-312.pyc
ADDED
|
Binary file (501 Bytes). View file
|
|
|
utils/__pycache__/bg_removal.cpython-312.pyc
ADDED
|
Binary file (1.12 kB). View file
|
|
|
utils/__pycache__/detector.cpython-312.pyc
ADDED
|
Binary file (1.96 kB). View file
|
|
|
utils/__pycache__/detector.cpython-39.pyc
ADDED
|
Binary file (825 Bytes). View file
|
|
|
utils/advisor.py
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from models.llm import StyleSavvy
|
| 2 |
+
|
| 3 |
+
advisor = StyleSavvy()
|
| 4 |
+
|
| 5 |
+
def get_advice(items, body_type, face_shape, gender,occasion):
|
| 6 |
+
return advisor.advise(items, body_type, face_shape, gender, occasion)
|
| 7 |
+
|
utils/bg_removal.py
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os, requests
|
| 2 |
+
from io import BytesIO
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from dotenv import load_dotenv
|
| 5 |
+
|
| 6 |
+
load_dotenv()
|
| 7 |
+
|
| 8 |
+
API_KEY = os.getenv("REMOVE_BG_API_KEY")
|
| 9 |
+
ENDPOINT = "https://api.remove.bg/v1.0/removebg"
|
| 10 |
+
|
| 11 |
+
def remove_background(image_bytes: bytes) -> Image.Image:
|
| 12 |
+
resp = requests.post(
|
| 13 |
+
ENDPOINT,
|
| 14 |
+
files ={"image_file": ("image.jpg", image_bytes, "image/jpeg")},
|
| 15 |
+
data = {"size": "auto"},
|
| 16 |
+
headers = {"X-Api-Key": API_KEY},
|
| 17 |
+
)
|
| 18 |
+
resp.raise_for_status()
|
| 19 |
+
return Image.open(BytesIO(resp.content))
|
| 20 |
+
|
utils/detector.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from io import BytesIO
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from models.vision import VisionModel
|
| 5 |
+
from utils.bg_removal import remove_background
|
| 6 |
+
|
| 7 |
+
vision = VisionModel()
|
| 8 |
+
FASHION_LABELS = {
|
| 9 |
+
"shirt", "t-shirt", "blouse", "tank top", "sweater", "hoodie", "jacket",
|
| 10 |
+
"coat", "overcoat", "raincoat", "windbreaker", "cardigan", "blazer",
|
| 11 |
+
"pants", "jeans", "shorts", "leggings", "tights", "skirt", "dress",
|
| 12 |
+
"suit", "jumpsuit", "romper", "vest", "sports bra", "tracksuit",
|
| 13 |
+
"belt", "tie", "scarf", "hat", "cap", "gloves", "socks",
|
| 14 |
+
"shoe", "sneakers", "boots", "sandals", "heels",
|
| 15 |
+
"watch", "necklace", "bracelet", "earrings", "ring",
|
| 16 |
+
"backpack", "handbag", "purse", "wallet"
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
def detect_clothing(image_input, do_bg_remove: bool = False):
|
| 20 |
+
# 1) Load into a PIL.Image if it's a filepath
|
| 21 |
+
if isinstance(image_input, str):
|
| 22 |
+
img = Image.open(image_input)
|
| 23 |
+
else:
|
| 24 |
+
img = image_input
|
| 25 |
+
|
| 26 |
+
# 2) Optionally remove background (works on bytes)
|
| 27 |
+
if do_bg_remove:
|
| 28 |
+
buf = BytesIO()
|
| 29 |
+
img.convert("RGB").save(buf, format="JPEG")
|
| 30 |
+
img_bytes = buf.getvalue()
|
| 31 |
+
img = remove_background(img_bytes)
|
| 32 |
+
else:
|
| 33 |
+
# ensure you drop any alpha channel
|
| 34 |
+
img = img.convert("RGB")
|
| 35 |
+
|
| 36 |
+
# 3) Run detection
|
| 37 |
+
raw_detections = vision.detect(img)
|
| 38 |
+
|
| 39 |
+
# 4) Filter and deduplicate
|
| 40 |
+
filtered = {}
|
| 41 |
+
for det in raw_detections:
|
| 42 |
+
label = det["label"].lower()
|
| 43 |
+
if label in FASHION_LABELS:
|
| 44 |
+
# Only keep the first or highest score if multiple detected
|
| 45 |
+
if label not in filtered or det["score"] > filtered[label]["score"]:
|
| 46 |
+
filtered[label] = {
|
| 47 |
+
"label": label,
|
| 48 |
+
"score": det["score"],
|
| 49 |
+
"box": det.get("box", [])
|
| 50 |
+
}
|
| 51 |
+
|
| 52 |
+
# 5) Return dict or fallback if empty
|
| 53 |
+
if not filtered:
|
| 54 |
+
return {"outfit": {"label": "outfit", "score": 1.0, "box": []}}
|
| 55 |
+
|
| 56 |
+
return filtered
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
|
utils/test_detector.py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# test_detector.py
|
| 2 |
+
|
| 3 |
+
from detector import detect_clothing
|
| 4 |
+
from PIL import Image, ImageDraw
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
def visualize_and_print(image_path, do_bg_remove=False, output_dir="vis"):
|
| 8 |
+
# Ensure output folder exists
|
| 9 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 10 |
+
|
| 11 |
+
img = Image.open(image_path).convert("RGB")
|
| 12 |
+
print(f"\n--- Testing {os.path.basename(image_path)} (bg_remove={do_bg_remove}) ---")
|
| 13 |
+
|
| 14 |
+
# Run your detector
|
| 15 |
+
dets = detect_clothing(img, do_bg_remove=do_bg_remove)
|
| 16 |
+
if not dets:
|
| 17 |
+
print("No detections!")
|
| 18 |
+
return
|
| 19 |
+
|
| 20 |
+
# Print raw detections
|
| 21 |
+
# Print raw detections
|
| 22 |
+
for i, d in enumerate(dets.values(), 1):
|
| 23 |
+
lbl = d["label"]
|
| 24 |
+
scr = d["score"]
|
| 25 |
+
box = d.get("box", [])
|
| 26 |
+
print(f" {i}. {lbl:12s} @ {scr:.2f} → {box}")
|
| 27 |
+
|
| 28 |
+
# Draw boxes
|
| 29 |
+
vis = img.copy()
|
| 30 |
+
draw = ImageDraw.Draw(vis)
|
| 31 |
+
for d in dets.values():
|
| 32 |
+
if d.get("box"):
|
| 33 |
+
x0, y0, x1, y1 = d["box"]
|
| 34 |
+
draw.rectangle([x0, y0, x1, y1], outline="red", width=2)
|
| 35 |
+
draw.text((x0, y0 - 10), f"{d['label']}:{d['score']:.2f}", fill="red")
|
| 36 |
+
# Save visualization
|
| 37 |
+
out_path = os.path.join(output_dir, os.path.basename(image_path))
|
| 38 |
+
vis.save(out_path)
|
| 39 |
+
print(f" Visualization saved to {out_path}")
|
| 40 |
+
|
| 41 |
+
if __name__ == "__main__":
|
| 42 |
+
# List your test images here
|
| 43 |
+
samples = [
|
| 44 |
+
"/Users/tanzimfarhan/Desktop/Python/Codes/SLU/CS5930/FinalProject/StyleSavvy/images/casual.jpg",
|
| 45 |
+
"/Users/tanzimfarhan/Desktop/Python/Codes/SLU/CS5930/FinalProject/StyleSavvy/images/WomenCasual.jpg",
|
| 46 |
+
]
|
| 47 |
+
for img_path in samples:
|
| 48 |
+
visualize_and_print(img_path, do_bg_remove=False)
|
| 49 |
+
# visualize_and_print(img_path, do_bg_remove=True)
|
utils/test_llm.py
ADDED
|
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# # test_llm.py
|
| 2 |
+
# """
|
| 3 |
+
# Test harness for StyleSavvy LLM prompts.
|
| 4 |
+
# Defines multiple prompt templates and evaluates the generated outputs,
|
| 5 |
+
# checking for the expected number of bullet-point style tips.
|
| 6 |
+
# """
|
| 7 |
+
# from models.llm import StyleSavvy
|
| 8 |
+
|
| 9 |
+
# # Variant prompt templates with placeholders
|
| 10 |
+
# PROMPT_TEMPLATES = {
|
| 11 |
+
# "occasion_driven": (
|
| 12 |
+
# "You are an expert fashion stylist. A client is preparing for {occasion}. "
|
| 13 |
+
# "They have a {body_type}-shaped body and a {face_shape} face. They’re currently wearing: {items}. "
|
| 14 |
+
# "Give 3 to 5 *distinct* style tips focused on making them look their best at the event. "
|
| 15 |
+
# "Make the suggestions relevant to the setting, weather, and formality of the occasion. "
|
| 16 |
+
# "Avoid repeating any advice."
|
| 17 |
+
# ),
|
| 18 |
+
|
| 19 |
+
# "function_based": (
|
| 20 |
+
# "You're advising someone with a {body_type} build and {face_shape} face. "
|
| 21 |
+
# "They're attending a {occasion} and are wearing {items}. "
|
| 22 |
+
# "Suggest 3–5 concise fashion improvements or enhancements. "
|
| 23 |
+
# "Each suggestion should be unique and tailored to the event. "
|
| 24 |
+
# "Include practical choices for color, layering, accessories, or footwear. "
|
| 25 |
+
# "Avoid repeating words or phrases."
|
| 26 |
+
# ),
|
| 27 |
+
|
| 28 |
+
# "intent_style": (
|
| 29 |
+
# "Act as a high-end personal stylist. Your client has a {body_type} body shape and a {face_shape} face. "
|
| 30 |
+
# "They're going to a {occasion} and are wearing {items}. "
|
| 31 |
+
# "Write 3 to 5 brief but powerful styling suggestions to elevate their look. "
|
| 32 |
+
# "Focus on intent—what feeling or impression each style choice creates for the event."
|
| 33 |
+
# ),
|
| 34 |
+
# }
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
# # Test parameters
|
| 38 |
+
# BODY_TYPE = "Slim"
|
| 39 |
+
# FACE_SHAPE = "Round"
|
| 40 |
+
# OCCASION = "Rooftop Evening Party"
|
| 41 |
+
# ITEMS = ["shirt", "jeans", "jacket","shoes"]
|
| 42 |
+
|
| 43 |
+
# if __name__ == "__main__":
|
| 44 |
+
# advisor = StyleSavvy()
|
| 45 |
+
|
| 46 |
+
# for name, template in PROMPT_TEMPLATES.items():
|
| 47 |
+
# # Build prompt by replacing placeholders
|
| 48 |
+
# prompt = template.format(
|
| 49 |
+
# body_type=BODY_TYPE,
|
| 50 |
+
# face_shape=FACE_SHAPE,
|
| 51 |
+
# occasion=OCCASION,
|
| 52 |
+
# items=", ".join(ITEMS)
|
| 53 |
+
# )
|
| 54 |
+
# print(f"=== Testing template: {name} ===")
|
| 55 |
+
# print("Prompt:")
|
| 56 |
+
# print(prompt)
|
| 57 |
+
|
| 58 |
+
# # Generate output (use only supported args)
|
| 59 |
+
# result = advisor.pipe(
|
| 60 |
+
# prompt,
|
| 61 |
+
# max_length=advisor.max_length,
|
| 62 |
+
# early_stopping=True,
|
| 63 |
+
# do_sample=False
|
| 64 |
+
# )[0]["generated_text"].strip()
|
| 65 |
+
|
| 66 |
+
# print("Generated output:")
|
| 67 |
+
# print(result)
|
| 68 |
+
|
| 69 |
+
# # Extract bullet lines
|
| 70 |
+
# bullets = [ln for ln in result.splitlines() if ln.strip().startswith("- ")]
|
| 71 |
+
# print(f"Number of bullets detected: {len(bullets)}")
|
| 72 |
+
# for i, b in enumerate(bullets, start=1):
|
| 73 |
+
# print(f" {i}. {b}")
|
| 74 |
+
# print("" + "-"*40)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
# test_llm.py
|
| 78 |
+
"""
|
| 79 |
+
Test harness for StyleSavvy LLM prompts.
|
| 80 |
+
Evaluates multiple prompt templates and parses the generated outputs into distinct tips.
|
| 81 |
+
"""
|
| 82 |
+
|
| 83 |
+
from models.llm import StyleSavvy
|
| 84 |
+
|
| 85 |
+
# Variant prompt templates with placeholders
|
| 86 |
+
# PROMPTS = {
|
| 87 |
+
# "direct_instruction": (
|
| 88 |
+
# "You are a professional fashion stylist. A client with a {body_type}-shaped body "
|
| 89 |
+
# "and {face_shape} face is preparing for {occasion}. They are currently wearing: {items}. "
|
| 90 |
+
# "Give exactly five distinct styling tips to improve their outfit. "
|
| 91 |
+
# "Each tip should be concise, actionable, and start on a new line."
|
| 92 |
+
# ),
|
| 93 |
+
# "category_expansion": (
|
| 94 |
+
# "As a high-end fashion advisor, provide five styling tips for a {body_type}-shaped person "
|
| 95 |
+
# "with a {face_shape} face attending {occasion}. They are wearing {items}. "
|
| 96 |
+
# "Offer one tip each for silhouette, color, accessories, footwear, and layering, "
|
| 97 |
+
# "each on its own line."
|
| 98 |
+
# ),
|
| 99 |
+
# "event_aesthetic": (
|
| 100 |
+
# "Imagine curating the perfect outfit for a {body_type}-shaped individual with a {face_shape} face "
|
| 101 |
+
# "at {occasion}. They are wearing {items}. Suggest 5 ways to enhance their style, "
|
| 102 |
+
# "focusing on event-appropriate aesthetics. Separate each tip with a newline."
|
| 103 |
+
# ),
|
| 104 |
+
# "fashion_editor": (
|
| 105 |
+
# "As a fashion editor, outline five unique styling tips for a {body_type}-shaped reader with a {face_shape} face "
|
| 106 |
+
# "attending {occasion}. They wear {items}. Each recommendation should reflect expertise and relevance. "
|
| 107 |
+
# "List each tip on a new line."
|
| 108 |
+
# ),
|
| 109 |
+
# "influencer_style": (
|
| 110 |
+
# "You’re an influencer giving sharp styling advice. A follower with a {body_type} body and {face_shape} face "
|
| 111 |
+
# "is going to {occasion}, wearing {items}. Reply with five snappy, modern style tips, "
|
| 112 |
+
# "each on its own line."
|
| 113 |
+
# ),
|
| 114 |
+
# }
|
| 115 |
+
|
| 116 |
+
PROMPTS = {
|
| 117 |
+
"direct_instruction": (
|
| 118 |
+
"You are a world-renowned fashion stylist celebrated for your bold creativity and attention to detail. "
|
| 119 |
+
"Your {gender} client has a {body_type}-shaped silhouette and a {face_shape} face, preparing for the {occasion}. "
|
| 120 |
+
"They’re wearing {items}. In vivid, sensory-rich language, provide one transformative styling recommendation that considers the event’s ambiance, lighting, and dress code. "
|
| 121 |
+
"Use dynamic adjectives and actionable insight to elevate their entire look."
|
| 122 |
+
),
|
| 123 |
+
"category_expansion": (
|
| 124 |
+
"As a top-tier fashion advisor, craft one impactful styling suggestion for a {gender} individual with a {body_type} body "
|
| 125 |
+
"and {face_shape} face attending the {occasion}. They have on {items}. "
|
| 126 |
+
"Highlight a strategic enhancement in silhouette, color scheme, accessory choice, or footwear to elevate their look."
|
| 127 |
+
),
|
| 128 |
+
"event_aesthetic": (
|
| 129 |
+
"Imagine you are curating an immersive style experience for a {gender} attendee with a {body_type} silhouette and {face_shape} face at the {occasion}. "
|
| 130 |
+
"They’re currently wearing {items}. Provide one highly descriptive recommendation that harmonizes fabric textures, color temperature, silhouette, and accessory accents with the event’s specific ambiance, lighting conditions, and seasonal atmosphere."
|
| 131 |
+
),
|
| 132 |
+
"fashion_editor": (
|
| 133 |
+
"You are the Editor-in-Chief of a prestigious fashion publication. Advise a {gender} trendsetter with a {body_type} frame and {face_shape} face attending the {occasion}, "
|
| 134 |
+
"currently in {items}. Offer one magazine-cover-worthy styling tip—highlight a trending color palette, editorial-worthy silhouette, and innovative accessory placement that will resonate with a discerning audience."
|
| 135 |
+
),
|
| 136 |
+
"influencer_style": (
|
| 137 |
+
"As a cutting-edge style influencer with millions of followers, recommend one eye-catching flair tip for a {gender} follower with a {body_type} physique and {face_shape} face, "
|
| 138 |
+
"heading to the {occasion} in {items}. Frame it as a social-media-caption-ready moment: mention a statement accessory, bold color pop, or texture twist that will go viral."
|
| 139 |
+
),
|
| 140 |
+
"seasonal_trend": (
|
| 141 |
+
"As a seasonal style expert specializing in spring/summer trends, guide a {gender} individual with a {body_type} shape and {face_shape} face preparing for the {occasion}. "
|
| 142 |
+
"They currently wear {items}. Provide one tip incorporating current seasonal motifs—think floral prints, breathable linens, or eco-friendly fabrics—that elevates their ensemble."
|
| 143 |
+
),
|
| 144 |
+
}
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
# Test parameters
|
| 148 |
+
BODY_TYPE = "Slim"
|
| 149 |
+
FACE_SHAPE = "SQUARE"
|
| 150 |
+
OCCASION = "BEACH PARTY"
|
| 151 |
+
ITEMS = ["jeans", "jacket", "shoes",'shirt']
|
| 152 |
+
GENDER = "Male"
|
| 153 |
+
|
| 154 |
+
if __name__ == "__main__":
|
| 155 |
+
advisor = StyleSavvy()
|
| 156 |
+
|
| 157 |
+
for name, template in PROMPTS.items():
|
| 158 |
+
print(f"=== Testing template: {name} ===")
|
| 159 |
+
|
| 160 |
+
# Build prompt
|
| 161 |
+
prompt = template.format(
|
| 162 |
+
body_type=BODY_TYPE,
|
| 163 |
+
face_shape=FACE_SHAPE,
|
| 164 |
+
occasion=OCCASION,
|
| 165 |
+
gender = GENDER,
|
| 166 |
+
items=", ".join(ITEMS)
|
| 167 |
+
|
| 168 |
+
)
|
| 169 |
+
print("Prompt:\n" + prompt)
|
| 170 |
+
|
| 171 |
+
# Generate response
|
| 172 |
+
result = advisor.pipe(
|
| 173 |
+
prompt,
|
| 174 |
+
max_length=advisor.max_length,
|
| 175 |
+
early_stopping=True,
|
| 176 |
+
num_beams=4,
|
| 177 |
+
no_repeat_ngram_size=3,
|
| 178 |
+
do_sample=False)[0]["generated_text"].strip()
|
| 179 |
+
|
| 180 |
+
print("\nRaw generated output:\n" + result)
|
| 181 |
+
|
| 182 |
+
# Parse into tips (bullets or sentence)
|
| 183 |
+
lines = result.splitlines()
|
| 184 |
+
tips = [ln.strip("-*0123456789. ").strip() for ln in lines if ln.strip()]
|
| 185 |
+
if len(tips) < 3:
|
| 186 |
+
# fallback to sentence split
|
| 187 |
+
tips = [p.strip() for p in result.split(".") if p.strip()]
|
| 188 |
+
tips = list(dict.fromkeys(tips)) # remove duplicates
|
| 189 |
+
|
| 190 |
+
print(f"\n💡 Parsed {len(tips)} style tips:")
|
| 191 |
+
for i, tip in enumerate(tips[:5], 1):
|
| 192 |
+
print(f"{i}. {tip}")
|
| 193 |
+
print("-" * 40)
|