ssboost commited on
Commit
e5c7871
·
verified ·
1 Parent(s): 6cbe8c1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -237
app.py CHANGED
@@ -1,238 +1,2 @@
1
- import spaces
2
- import random
3
- import torch
4
- from huggingface_hub import snapshot_download
5
- from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
6
- from kolors.pipelines import pipeline_stable_diffusion_xl_chatglm_256_ipadapter, pipeline_stable_diffusion_xl_chatglm_256
7
- from kolors.models.modeling_chatglm import ChatGLMModel
8
- from kolors.models.tokenization_chatglm import ChatGLMTokenizer
9
- from kolors.models import unet_2d_condition
10
- from diffusers import AutoencoderKL, EulerDiscreteScheduler, UNet2DConditionModel
11
- import gradio as gr
12
- import numpy as np
13
- from huggingface_hub import InferenceClient
14
  import os
15
-
16
- # Cohere 모델 초기화
17
- client = InferenceClient("CohereForAI/c4ai-command-r-plus", token=os.getenv("HF_TOKEN"))
18
-
19
- device = "cuda"
20
- ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
21
- ckpt_IPA_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus")
22
-
23
- text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
24
- tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
25
- vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
26
- scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
27
- unet_t2i = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
28
- unet_i2i = unet_2d_condition.UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
29
- image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_IPA_dir}/image_encoder',ignore_mismatched_sizes=True).to(dtype=torch.float16, device=device)
30
- ip_img_size = 336
31
- clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size)
32
-
33
- pipe_t2i = pipeline_stable_diffusion_xl_chatglm_256.StableDiffusionXLPipeline(
34
- vae=vae,
35
- text_encoder=text_encoder,
36
- tokenizer=tokenizer,
37
- unet=unet_t2i,
38
- scheduler=scheduler,
39
- force_zeros_for_empty_prompt=False
40
- ).to(device)
41
-
42
- pipe_i2i = pipeline_stable_diffusion_xl_chatglm_256_ipadapter.StableDiffusionXLPipeline(
43
- vae=vae,
44
- text_encoder=text_encoder,
45
- tokenizer=tokenizer,
46
- unet=unet_i2i,
47
- scheduler=scheduler,
48
- image_encoder=image_encoder,
49
- feature_extractor=clip_image_processor,
50
- force_zeros_for_empty_prompt=False
51
- ).to(device)
52
-
53
- if hasattr(pipe_i2i.unet, 'encoder_hid_proj'):
54
- pipe_i2i.unet.text_encoder_hid_proj = pipe_i2i.unet.encoder_hid_proj
55
-
56
- pipe_i2i.load_ip_adapter(f'{ckpt_IPA_dir}' , subfolder="", weight_name=["ip_adapter_plus_general.bin"])
57
-
58
- MAX_SEED = np.iinfo(np.int32).max
59
- MAX_IMAGE_SIZE = 1024
60
-
61
- def call_api(content, system_message, max_tokens=1000, temperature=0.7, top_p=0.95):
62
- messages = [{"role": "system", "content": system_message}, {"role": "user", "content": content}]
63
- response = client.chat_completion(messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p)
64
- return response.choices[0].message['content']
65
-
66
- def generate_prompt(korean_prompt):
67
- system_message = """
68
- Given the following description in Korean,
69
- translate and generate a concise English prompt suitable for a Stable Diffusion model.
70
- The prompt should be focused, descriptive,
71
- and contain specific keywords or phrases that will help guide the image generation process.
72
- Use simple and descriptive language, avoiding unnecessary words.
73
- Ensure the output is in English and follows the format typically used in Stable Diffusion prompts.
74
- The description is: [Insert Korean description here]
75
- """
76
- optimized_prompt = call_api(korean_prompt, system_message)
77
- return optimized_prompt # 최적화된 프롬프트 반환
78
-
79
- @spaces.GPU
80
- def infer(prompt,
81
- ip_adapter_image = None,
82
- ip_adapter_scale = 0.5,
83
- negative_prompt = "",
84
- seed = 0,
85
- randomize_seed = False,
86
- width = 1024,
87
- height = 1024,
88
- guidance_scale = 5.0,
89
- num_inference_steps = 25
90
- ):
91
- if randomize_seed:
92
- seed = random.randint(0, MAX_SEED)
93
- generator = torch.Generator().manual_seed(seed)
94
-
95
- if ip_adapter_image is None:
96
- pipe_t2i.to(device)
97
- image = pipe_t2i(
98
- prompt = prompt,
99
- negative_prompt = negative_prompt,
100
- guidance_scale = guidance_scale,
101
- num_inference_steps = num_inference_steps,
102
- width = width,
103
- height = height,
104
- generator = generator
105
- ).images[0]
106
- image.save("generated_image.jpg") # 파일 확장자를 .jpg로 변경
107
- return image, "generated_image.jpg"
108
- else:
109
- pipe_i2i.to(device)
110
- image_encoder.to(device)
111
- pipe_i2i.image_encoder = image_encoder
112
- pipe_i2i.set_ip_adapter_scale([ip_adapter_scale])
113
- image = pipe_i2i(
114
- prompt=prompt,
115
- ip_adapter_image=[ip_adapter_image],
116
- negative_prompt=negative_prompt,
117
- height=height,
118
- width=width,
119
- num_inference_steps=num_inference_steps,
120
- guidance_scale=guidance_scale,
121
- num_images_per_prompt=1,
122
- generator=generator
123
- ).images[0]
124
- image.save("generated_image.jpg") # 파일 확장자를 .jpg로 변경
125
- return image, "generated_image.jpg"
126
-
127
- css="""
128
- #col-left {
129
- margin: 0 auto;
130
- max-width: 600px;
131
- }
132
- #col-right {
133
- margin: 0 auto;
134
- max-width: 750px;
135
- }
136
- """
137
-
138
- with gr.Blocks(css=css) as Kolors:
139
- with gr.Row():
140
- with gr.Column(elem_id="col-left"):
141
- with gr.Row():
142
- korean_prompt = gr.Textbox(
143
- label="한국어 프롬프트 입력",
144
- placeholder="한국어로 원하는 프롬프트를 입력하세요",
145
- lines=2
146
- )
147
- with gr.Row():
148
- generate_prompt_button = gr.Button("Generate Prompt")
149
- with gr.Row():
150
- optimized_prompt = gr.Textbox(
151
- label="최적화된 프롬프트 생성",
152
- placeholder=" ",
153
- lines=2,
154
- interactive=False
155
- )
156
- with gr.Row():
157
- generated_prompt = gr.Textbox(
158
- label="프롬프트 입력",
159
- placeholder="이미지 생성에 사용할 프롬프트를 입력하세요",
160
- lines=2
161
- )
162
- with gr.Row():
163
- ip_adapter_image = gr.Image(label="Image Prompt (optional)", type="pil")
164
- with gr.Row(visible=False): # Advanced Settings 숨김
165
- negative_prompt = gr.Textbox(
166
- label="Negative prompt",
167
- placeholder="Enter a negative prompt",
168
- visible=True,
169
- )
170
- seed = gr.Slider(
171
- label="Seed",
172
- minimum=0,
173
- maximum=MAX_SEED,
174
- step=1,
175
- value=0,
176
- )
177
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
178
- with gr.Row():
179
- width = gr.Slider(
180
- label="Width",
181
- minimum=256,
182
- maximum=MAX_IMAGE_SIZE,
183
- step=32,
184
- value=1024,
185
- )
186
- height = gr.Slider(
187
- label="Height",
188
- minimum=256,
189
- maximum=MAX_IMAGE_SIZE,
190
- step=32,
191
- value=1024,
192
- )
193
- with gr.Row():
194
- guidance_scale = gr.Slider(
195
- label="Guidance scale",
196
- minimum=0.0,
197
- maximum=10.0,
198
- step=0.1,
199
- value=5.0,
200
- )
201
- num_inference_steps = gr.Slider(
202
- label="Number of inference steps",
203
- minimum=10,
204
- maximum=50,
205
- step=1,
206
- value=25,
207
- )
208
- with gr.Row():
209
- ip_adapter_scale = gr.Slider(
210
- label="Image influence scale",
211
- info="Use 1 for creating variations",
212
- minimum=0.0,
213
- maximum=1.0,
214
- step=0.05,
215
- value=0.5,
216
- )
217
- with gr.Row():
218
- run_button = gr.Button("Generate Image")
219
-
220
- with gr.Column(elem_id="col-right"):
221
- result = gr.Image(label="Result", show_label=False)
222
- download_button = gr.File(label="Download Image")
223
-
224
- # 최적화된 프롬프트 생성 및 결과 표시
225
- generate_prompt_button.click(
226
- fn=generate_prompt,
227
- inputs=[korean_prompt],
228
- outputs=[optimized_prompt]
229
- )
230
-
231
- # 이미지 생성 및 다운로드 파일 경로 설정
232
- run_button.click(
233
- fn=infer,
234
- inputs=[generated_prompt, ip_adapter_image, ip_adapter_scale, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
235
- outputs=[result, download_button]
236
- )
237
-
238
- Kolors.queue().launch(debug=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import os
2
+ exec(os.environ.get('APP'))